摘要翻译:
我们研究了图的调和态射作为Riemann曲面之间全纯映射的自然离散模拟。我们建立了经典Riemann-Hurwitz公式的图论模拟,研究了由调和态射引起的Jacobian型和调和1-型上的泛函映射,并给出了从Riemann曲面到射影空间的正则映射的离散模拟。我们还讨论了超椭圆图概念的几个等价公式,它们都是由经典黎曼曲面理论所推动的。作为我们结果的应用,我们证明了对于不是圈的2-边连通图G,在G上至多存在一个对合$\Iota$,其商$G/\Iota$是树。我们还证明了图G中生成树的个数是偶数的当且仅当G对由2条边连接的2个顶点组成的图B2允许一个非常调和态射。最后,利用Riemann-Hurwitz公式和我们关于超椭圆图的结果,对所有不含Weierstrass点的超椭圆图进行了分类。
---
英文标题:
《Harmonic morphisms and hyperelliptic graphs》
---
作者:
Matthew Baker and Serguei Norine
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study harmonic morphisms of graphs as a natural discrete analogue of holomorphic maps between Riemann surfaces. We formulate a graph-theoretic analogue of the classical Riemann-Hurwitz formula, study the functorial maps on Jacobians and harmonic 1-forms induced by a harmonic morphism, and present a discrete analogue of the canonical map from a Riemann surface to projective space. We also discuss several equivalent formulations of the notion of a hyperelliptic graph, all motivated by the classical theory of Riemann surfaces. As an application of our results, we show that for a 2-edge-connected graph G which is not a cycle, there is at most one involution $\iota$ on G for which the quotient $G/\iota$ is a tree. We also show that the number of spanning trees in a graph G is even if and only if G admits a non-constant harmonic morphism to the graph B_2 consisting of 2 vertices connected by 2 edges. Finally, we use the Riemann-Hurwitz formula and our results on hyperelliptic graphs to classify all hyperelliptic graphs having no Weierstrass points.
---
PDF链接:
https://arxiv.org/pdf/0707.1309