摘要翻译:
设$x$是一个光滑的Fano流形,它具有\cite{cm2}和$\mathcal{F}意义上的``nice'$n$-块集合$x$上的一个相干集。假设$x$是Fano,并且所有块都是相干束。在这里,我们证明了如果${Supp}(\mathcal{F})$是有限的,则$\mathcal{F}$具有\cite{cm2}意义下的正则性$-\infty$;在适当的假设下,相反的条件是正确的。当$x$具有\cite{cm1}意义上的几何集合时,相应的结果也为真。
---
英文标题:
《$n$-blocks collections on Fano manifolds and sheaves with regularity
$-\infty$》
---
作者:
E. Ballico, F. Malaspina
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $X$ be a smooth Fano manifold equipped with a `` nice '' $n$-blocks collection in the sense of \cite{cm2} and $\mathcal {F}$ a coherent sheaf on $X$. Assume that $X$ is Fano and that all blocks are coherent sheaves. Here we prove that $\mathcal {F}$ has regularity $-\infty$ in the sense of \cite{cm2} if ${Supp}(\mathcal {F})$ is finite, the converse being true under mild assumptions. The corresponding result is also true when $X$ has a geometric collection in the sense of \cite{cm1}.
---
PDF链接:
https://arxiv.org/pdf/0710.3531