摘要翻译:
本文讨论了律不变相干风险测度及其Kusuoka表示。通过阐述极小表示的存在性,我们证明了每一个Kusuoka表示都可以约化为它的极小表示。风险度量的Kusuoka表示的唯一性--在论文中规定的某种意义上--是从这个初始结果中推导出来的。此外,利用随机序关系来识别最小Kusuoka表示。证明了极小表示中的测度对于序关系是极值的。最后利用这些工具为重要的实际例子提供最小表示。虽然Kusuoka表示通常只给出非原子概率空间,但这种表示弥合了与原子概率空间的差距。
---
英文标题:
《Uniqueness of Kusuoka Representations》
---
作者:
Alois Pichler, Alexander Shapiro
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
This paper addresses law invariant coherent risk measures and their Kusuoka representations. By elaborating the existence of a minimal representation we show that every Kusuoka representation can be reduced to its minimal representation. Uniqueness -- in a sense specified in the paper -- of the risk measure's Kusuoka representation is derived from this initial result. Further, stochastic order relations are employed to identify the minimal Kusuoka representation. It is shown that measures in the minimal representation are extremal with respect to the order relations. The tools are finally employed to provide the minimal representation for important practical examples. Although the Kusuoka representation is usually given only for nonatomic probability spaces, this presentation closes the gap to spaces with atoms.
---
PDF链接:
https://arxiv.org/pdf/1210.7257