全部版块 我的主页
论坛 经济学人 二区 外文文献专区
280 0
2022-03-23
摘要翻译:
我们研究了一个决策者的问题,他必须根据一个实验提供最好的治疗建议。通过一个捕捉决策者感兴趣的分布特征的函数来衡量政策建议结果分布的合意性。例如,这可能是其固有的不平等、福利、贫困程度或与预期成果分配的距离。如果感兴趣的泛函不是拟凸的,或者如果有约束,最优推荐可能是处理的混合。这大大扩展了必须考虑的一组建议。我们通过获得最大期望后悔下界来刻画问题的难度。在此基础上,我们提出了两个最优后悔策略。第一个策略是静态的,因此无论在实验阶段的过程中被试是否顺序到达,都适用。第二种策略可以利用受试者通过连续消除劣质处理而顺序到达,从而将采样努力花在最需要的地方。
---
英文标题:
《Treatment recommendation with distributional targets》
---
作者:
Anders Bredahl Kock and David Preinerstorfer and Bezirgen Veliyev
---
最新提交年份:
2021
---
分类信息:

一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  We study the problem of a decision maker who must provide the best possible treatment recommendation based on an experiment. The desirability of the outcome distribution resulting from the policy recommendation is measured through a functional capturing the distributional characteristic that the decision maker is interested in optimizing. This could be, e.g., its inherent inequality, welfare, level of poverty or its distance to a desired outcome distribution. If the functional of interest is not quasi-convex or if there are constraints, the optimal recommendation may be a mixture of treatments. This vastly expands the set of recommendations that must be considered. We characterize the difficulty of the problem by obtaining maximal expected regret lower bounds. Furthermore, we propose two regret-optimal policies. The first policy is static and thus applicable irrespectively of subjects arriving sequentially or not in the course of the experimentation phase. The second policy can utilize that subjects arrive sequentially by successively eliminating inferior treatments and thus spends the sampling effort where it is most needed.
---
PDF链接:
https://arxiv.org/pdf/2005.09717
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群