摘要翻译:
本文介绍了
神经网络在可再生能源领域的应用。我们开发了一种方法,用于在水平面上每日预测全球太阳辐射。我们使用一个特殊的时间序列预处理和一个多层感知器(MLP)来预测日地平线上的太阳辐射。第一个结果是有希望的,nRMSE<21%和RMSE<998WH/m2。优化后的MLP的预测效果与ARIMA技术、贝叶斯推理、马尔可夫链和k近邻近似器等传统方法相似甚至更好。此外,我们还发现我们的数据预处理方法可以显著减少预测误差。
---
英文标题:
《Solar radiation forecasting using ad-hoc time series preprocessing and
neural networks》
---
作者:
Christophe Paoli, Cyril Voyant, Marc Muselli, Marie-Laure Nivet
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Numerical Analysis 数值分析
分类描述:cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
cs.na是Math.na的别名。大致包括ACM学科类G.1的材料。
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
---
英文摘要:
In this paper, we present an application of neural networks in the renewable energy domain. We have developed a methodology for the daily prediction of global solar radiation on a horizontal surface. We use an ad-hoc time series preprocessing and a Multi-Layer Perceptron (MLP) in order to predict solar radiation at daily horizon. First results are promising with nRMSE < 21% and RMSE < 998 Wh/m2. Our optimized MLP presents prediction similar to or even better than conventional methods such as ARIMA techniques, Bayesian inference, Markov chains and k-Nearest-Neighbors approximators. Moreover we found that our data preprocessing approach can reduce significantly forecasting errors.
---
PDF链接:
https://arxiv.org/pdf/0906.0311