摘要:非线性时间序列分析是目前迅速发展的一个课题,这是因为在现实世界中许多现象都不能很好地用线性模型解决。文章首先分析了时间序列模型的建立机制,然后利用神经网络进行非线性信号处理,从而构造了一种新的
神经网络非线性时间序列模型。该文将此方法与AR模型和SETAR模型进行了数值结果对比,结果表明该文提出的方法优于这两种方法。
原文链接:http://www.cqvip.com//QK/95202X/199401/1512024.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)