全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 藏经阁
4809 72
2017-08-18
iMeViST7RA5P9paFmsEZGvupxNMEujXM.jpg
English | 16 Aug. 2017 | ISBN: 1787284581 | ASIN: B073RMB25X | 210 Pages | AZW3 + code | 8 MB
Key Features

Get to know seven algorithms for your data science needs in this concise, insightful guide
Ensure you're confident in the basics by learning when and where to use various data science algorithms
Learn to use machine learning algorithms in a period of just 7 days

Book Description

Machine learning applications are highly automated and self-modifying, and they continue to improve over time with minimal human intervention as they learn with more data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed that solve these problems perfectly. Data science helps you gain new knowledge from existing data through algorithmic and statistical analysis.

This book will address the problems related to accurate and efficient data classification and prediction. Over the course of 7 days, you will be introduced to seven algorithms, along with exercises that will help you learn different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. You will then find out how to predict data based on the existing trends in your datasets.

This book covers algorithms such as: k-Nearest Neighbors, Naive Bayes, Decision Trees, Random Forest, k-Means, Regression, and Time-series. On completion of the book, you will understand which machine learning algorithm to pick for clustering, classification, or regression and which is best suited for your problem.

What you will learn

Find out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  how to classify using Naive Bayes, Decision Trees, and Random Forest to achieve accuracy to solve complex problems
Identify a data science problem correctly and devise an appropriate prediction solution using Regression and Time-series
See how to cluster data using the k-Means algorithm
Get to know how to implement the algorithms efficiently in the Python and R languages

About the Author

David Natingga graduated in 2014 from Imperial College London in MEng Computing with a specialization in Artificial Intelligence. In 2011, he worked at Infosys Labs in Bangalore, India, researching the optimization of machine learning algorithms. In 2012 and 2013 at Palantir Technologies in Palo Alto, USA, he developed algorithms for big data.

In 2014 as a data scientist at Pact Coffee, London, UK, he created an algorithm suggesting products based on the taste preferences of the customers and the structures of the coffees. As a part of his journey to use pure mathematics to advance the field of AI, he is a PhD candidate in Computability Theory at University of Leeds, UK. In 2015, he spent 8 months at Japan's Advanced Institute of Science and Technology as a research visitor.

Table of Contents

Classifying from k-Nearest Neighbors
Naive Bayes – choosing the most probable class
Decision Trees
Random Forest – forests of decision trees
k-Means – dividing a dataset into k-groups
Regression – learning models as functions
Time Series – learning time-dependent models
Appendix A: Python & R reference
Appendix B: Statistics
Appendix C: Glossary of Algorithms and Methods in Data Science

本帖隐藏的内容

Data Science Algorithms in a Week.rar
大小:(8.53 MB)

只需: 10 个论坛币  马上下载



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2017-8-18 23:17:31
谢谢楼主分享!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-18 23:30:19
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-18 23:42:24
这个很有用,可以学学
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-19 00:20:24
igs816 发表于 2017-8-18 22:10
English | 16 Aug. 2017 | ISBN: 1787284581 | ASIN: B073RMB25X | 210 Pages | AZW3 + code | 8 MB
Key ...
谢谢分享
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2017-8-19 00:44:32
thanks a lot
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

点击查看更多内容…
相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群