Editorial Reviews
"This well-written book provides a great and intuitive introduction to functional data analysis (FDA) which has emerged as an important area in statistics and found tons of scientific applications...This book succeeds at introducing this novel statistical concept and methodology while keeps the level of mathematical and statistical sophistication required to understand at the level of an introductory graduate-level course, which makes for pleasant reading. A nice feature of the book is its strong focus on implementation using R, which makes it a great candidate of textbooks or reference books for (master-level) graduate students and applied researchers...Some unique features of this book as compared to existing ones include (1) its strong focus on implementation using R; (2) chapters on Sparse FDA, generalized functional linear models, functional time series, and spatial functional data; (3) well-designed exercises that can be used as homework problems."
~Xianyang Zhang, Texas A&M University
"The main advantage of the book is its emphasis introducing the material through realistic examples and computational tools, while also providing mathematical guidance for the methodologies. Also, important topics like functional time series and spatial functional data are not adequately covered in comparable texts like Ramsay and Silverman, Ramsay and Hooker, Ferraty and Vieu, and Hsing and Eubank. In that respect, the book offers additional and practically relevant material and perspective."
~Debashis Paul, University of California, Davis
"The classic tools from the field of functional data analysis are introduced comprehensively and immediately put into a framework of potential application. I would probably advise any reader that is new to functional data analysis to start by reading this book."
~Claudia Klüppelberg, Technische Universität München
"Being more advanced and up to date than the Ramsay and Silverman, it complements various topics that are just briefly mentioned or not covered at all by Ramsay and Silverman."
~Laura Sangali, Politecnico di Milano
About the Author
Piotr Kokoszka is a professor of statistics at Colorado State University. His research interests include functional data analysis, with emphasis on dependent data structures, and applications to geosciences and finance. He is a coauthor of the monograph Inference for Functional Data with Applications (with L. Horváth). He is an associate editor of several journals, including Computational Statistics and Data Analysis, Journal of Multivariate Analysis, Journal of Time Series Analysis, and Scandinavian Journal of Statistics.
Matthew Reimherr is an assistant professor of statistics at Pennsylvania State University. His research interests include functional data analysis, with emphasis on longitudinal studies and applications to genetics and public health. He is an associate editor of Statistical Modeling.