数学专业毕业论文开题报告
拟选题目:函数项级数一致收敛的判别
选题依据及研究意义
函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如
Cauchy
判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于
()nux?
一致收敛性的判别法,如
Cauchy
判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效
地运用函数项级数一致收敛的判别法。而次课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。
选题研究现状
目前通用的数学分析教材
(如华东师范大学,复旦大学,吉林大学,北京师范大学等
)其介绍的主要内容如下:
M判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的 ...
附件列表