13-模型的诊断与检验
(第3版252页)
在建立模型过程中,要对模型参数以及模型的各种假定条件作检验。这些检验要通过运用统计量来完成。在第2章和第3章已经介绍过检验单个回归参数显著性的t统计量和检验模型参数总显著性的F统计量。在第5章介绍了模型误差项是否存在异方差的Durbin-Watson检验、White检验;在第6章介绍了模型误差项是否存在自相关的DW检验和BG检验。本章开始先简要总结模型参数总显著性的F检验、单个回归参数显著性的t检验。然后再介绍几个在建模过程中也很常用的其他检验方法。他们是检验模型若干线性约束条件是否成立的F检验和似然比(LR)检验、Wald检验、LM检验、JB检验以及Granger非因果性检验。
第11章 模型的诊断与检验
11.1 模型总显著性的F 检验
以多元线性回归模型,yt = 0+1xt1+2xt2+…+k xt k+ ut为例, 原假设与备择假设分别是 H0:1= 2 = … = k = 0; H1:j不全为零在原假设成立条件下,统计量其中SSR指回归平方和;SSE指残差平方和;k+1表示模型中被估参数个数 ...
附件列表