全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管文库(原现金交易版)
95 0
2025-03-14
一类广义仿紧空间的研究
拓扑学主要是研究拓扑不变性质,而紧性在拓扑学中占有很重要的地位,有很多的学者已经在紧性理论这一方面取得了非常显著的成效,并取得了丰硕的成果。仿紧性、可膨胀性及闭空间理论在紧性理论中是非常重要的一部分,所以仿紧性、可膨胀性及闭空间理论的研究与学习就很有意义了。
本文内容概括如下:一、定义了 q-(可数)可膨胀空间,并在q-闭包保持的条件下得出一些性质;进而给出了q-可膨胀空间与θ-q-(可数)可膨胀空间的相关联系,并且在极不连通的条件下给出了 q-可膨胀空间与其他一些膨胀空间的相关联系。二、定义了q-(可数)仿紧空间、Yq-仿紧子集和λq-闭集,并得出了它们与q仿紧空间的相关联系,在此基础上,在LF拓扑空间中定义了 q-I仿紧空间与q-II仿紧空间,并得出了它们具有闭遗传这一性质;进而给出了 Q正则、强Q正则、强Q正规与q-II仿紧空间的相关联系;最后定义了满子范畴和积与上积,进一步得到了q-Ⅰ仿紧空间与q-II仿紧空间是有积与上积的范畴。
附件列表

一类广义仿紧空间的研究.pptx.pptx

大小:107 KB

只需: RMB 2 元  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群