一、什么是AI?
人工智能(AI,Artificial Intelligence)是指让机器具备人类智能的能力,使其能够执行如感知、推理、决策、学习和创造等任务。AI 的发展经历了多个阶段,从最早的基于规则的专家系统,到如今的深度学习和
神经网络驱动的智能系统,使得 AI 具备了更强的学习能力和泛化能力。
AI 主要包括以下几个关键领域:
计算机视觉(CV):如人脸识别、图像分类、目标检测等。
自然语言处理(NLP):如机器翻译、文本摘要、语音识别等。
机器人技术:如自动驾驶、机械臂、智能家居等。
决策系统:如推荐系统、智能调度、金融风控等。
其中,自然语言处理(NLP) 是 AI 领域的一个重要分支,而 LLM(大语言模型)正是 NLP 领域的一项突破性技术。
二、AI与LLM 的关系
LLM(Large Language Model,大语言模型)属于 AI 领域的一个重要子集,它是 AI 发展的高级阶段,专门用于处理和生成自然语言。AI 主要提供了 LLM 发展的基础技术,而 LLM 是 AI 在自然语言处理上的具体应用。
三、支持的 LLM、嵌入模型和向量数据库
LLM:包括任何开源的 llama.cpp 兼容模型、OpenAI、Azure OpenAI、Anthropic ClaudeV2、LM Studio 和 LocalAi。
嵌入模型:AnythingLLM 原生嵌入器、OpenAI、Azure OpenAI、LM Studio 和 LocalAi。
向量数据库:LanceDB(默认)、Pinecone、Chroma、Weaviate 和 QDrant。
四、大语言模型的概念
大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种
人工智能模型,旨在理解和生成人类语言。
通常,大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型在大量的文本数据上进行训练,例如国外的有GPT-3、GPT-4、PaLM、Galactica和LLaMA等,国内的有ChatGLM、文心一言、通义千问、讯飞星火等。
在这个阶段,计算机的“大脑”变得非常巨大,拥有数十亿甚至数千亿的参数。这就像是将计算机的大脑升级到了一个巨型超级计算机。这让计算机可以在各种任务上表现非常出色,有时甚至比人类还要聪明。
为了探索性能的极限,许多研究人员开始训练越来越多庞大的语言模型,例如拥有1750亿参数的GPT-3和5400亿参数的PaLM。尽管这些大型语言模型与小型语言模型(例如BERT的3.3亿参数和GPT-2的15亿参数)使用相似的架构和预训练任务,但它们展现出截然不同的能力,尤其在解决复杂任务时表现出了惊人的潜力,这被称为“涌现能力”。以GPT-3和GPT-2为例,GPT-3可以通过学习上下文来解决少样本任务,而GPT-2在这方面表现较差。因此,研究界给这些庞大的语言模型起了个名字,称之为“大语言模型(LLM)”。而LLM的一个杰出应用就是ChatGPT,它是GPT系统LLM用于与人类对话式应用的大胆尝试,展现出了非常流畅和自然的表现。
五、LLM的应用和影响
LLM已经在许多领域产生了深渊的影响。在自然语言处理领域,它可以帮助计算机更好地理解和生成文本,包括写文章、回答问题、翻译语言。在信息检索领域,它可以改进搜索引擎,让我们更轻松地找到所需的信息。在计算机视觉领域,研究人员还在努力让计算机理解图像和文字,以改善多媒体交互。】
最重要的是,LLM的出现让人们重新思考了通用人工智能(AGI)的可能性。AGI是一种像人类一样思考和学习的人工智能。LLM被认为是AGI的一种早期形式,这引发了对未来人工智能发展的许多思考和计划。
总之,LLM是一种令人兴奋的技术,它让计算机更好地理解和使用语言,正在改变着我们与技术互动的方式,同时也引发了对未来人工智能的无限探索。
六、LLM为什么要基于Transformer架构?
在Transformer架构出现之前,自然语言模型主要依赖循环神经网络(RNN),但RNN的顺序处理方式限制了计算的并行性,且在处理长序列时,信息容易丢失或遗忘。
Transformer通过引入自注意力机制和位置编码,克服了传统模型在捕捉长距离依赖和并行计算方面的局限。自注意力机制允许模型同时关注输入序列中的所有词,捕捉更远距离的依赖关系,避免了RNN及其变体LSTM模型中存在的顺序处理瓶颈。因此,Transformer成为大规模预训练模型的基础架构,并在多个任务中展现了出色的性能。
七、LLM扩展应用
为了应对日益复杂的任务需求,一些新型的大模型应运而生,它们对单一LLM的能力进行了扩展和补充。这些模型主要包括多模态大语言模型、LLM智能体(Agent)、垂直领域LLM等。以下是对这些模型的简要介绍:
多模态大语言模型 (Multimodal Large Language Models)
多模态大语言模型通过融合文本、图像、视频和音频等多种信息,能够同时处理不同类型的输入,生成更丰富的语义理解。与传统模型不同,它在多元数据训练下显著提升了对各类数据的理解能力,展现出更强的任务适应性和通用性。例如,在图像描述任务中,模型结合图像和文本生成精准自然的语言;在音频处理任务中,通过融合音频和文本信息,提高语音识别和语义理解的准确性。
LLM智能体(Agent)
LLM智能体(Agent)是基于LLM的人工智能系统,它能够理解、生成和处理语言,以执行各种任务。与传统的程序或工具不同,智能体不仅能够提供信息和答案,还能根据上下文进行自主推理、决策和行动。通过与用户的互动,它可以处理复杂的问题,提供个性化建议,并完成诸如对话、文本生成、翻译、问答等多种任务。智能体的核心是成熟的LLM,它通过大量的语料库学习语言的结构和含义,不断优化其理解和生成能力。