全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管文库(原现金交易版)
132 0
2025-04-04

内容上应该是全网最全了,内容非常多,文件过多无法一一列举,欢迎下载学习!

人工智能核心论文仓库
☆☆☆人工智能前沿精选优质论文合集
NLP各领域必读综述性论文整理分享
人工智能+顶刊顶会【论文合集】
AI相关专业论文【写作最全指南】
论文汇总.xlsx

【9】论文查重
【8】科技写作集锦
【7】英文教程
【6】人工智能相关专业论文指导
【5】研究生必读论文能力学习
【4】300份EndNote论文写作模板及教程
【3】SCI 写作路径模板+1000句型汇总
【2】SCI写作
【1】SCI投稿
【14】人工智能资料单大全
【13】chatgpt辅助写作教程
【12】985硕博论文写作工具
【11】PDF编辑器
【10】学术答辩PPT模板
深度学习论文写作学习路线.xmind
【9】论著中讨论部分的写作_20201109135839.pdf
【9】论著中讨论部分的写作_20201109135727.pdf
【9】论著中讨论部分的写作.pdf
【8】科技写作基本常识_20201109135836.pdf
【8】科技写作基本常识_20201109135720.pdf
【8】科技写作基本常识.pdf
【7】科技论文写作必学技巧_20201109135841.pdf
【7】科技论文写作必学技巧.pdf
【6】科技论文的规范写作_20201109135851.pdf
【6】科技论文的规范写作_20201109135838.pdf
【6】科技论文的规范写作.pdf
【5】教你如何写开题报告_20201109135835.pdf
【5】教你如何写开题报告_20201109135738.pdf
【5】教你如何写开题报告.pdf
【4】怎样写好论文_20201109135840.pdf
【4】怎样写好论文_20201109135732.pdf
【4】怎样写好论文.pdf
【3】写科研论文导师不传授的细节_20201109135844.pdf
【3】写科研论文导师不传授的细节_20201109135723.pdf
【3】写科研论文导师不传授的细节.pdf
【2】向科研写作炉火纯青的境界进发_20201109135837.pdf
【2】向科研写作炉火纯青的境界进发_20201109135730.pdf
【2】向科研写作炉火纯青的境界进发.pdf
【1】科技论文的写作要点_20201109135846.pdf
【1】科技论文的写作要点_20201109135723.pdf
【1】科技论文的写作要点.pdf
【11】科研学术论文写作技巧大全_20201109135837.pdf
【11】科研学术论文写作技巧大全_20201109135734.pdf
【11】科研学术论文写作技巧大全.pdf
【10】如何准备文献综述和撰写论文_20201109135839.pdf
【10】如何准备文献综述和撰写论文_20201109135729.pdf
【10】如何准备文献综述和撰写论文.pdf
英语写作指南经典(The_Elements_of_style)_20201109135838.pdf
英语写作指南经典(The_Elements_of_style)_20201109135734.pdf
英语写作指南经典(The_Elements_of_style).pdf
科技英语常用词汇用法手册_20201109135839.pdf
科技英语常用词汇用法手册_20201109135720.pdf
科技英语常用词汇用法手册.pdf
WRITING PAPERS FOR PUBLICTION_20201109135840.ppt
WRITING PAPERS FOR PUBLICTION_20201109135725.ppt
WRITING PAPERS FOR PUBLICTION.ppt
Writing In English, A Practical Handbook for Scientific and Technical Writers (2000)_20201109135841.pdf
Writing In English, A Practical Handbook for Scientific and Technical Writers (2000)_20201109135722.pdf
Writing In English, A Practical Handbook for Scientific and Technical Writers (2000).pdf
Writing a Scientific Paper_20201109135837.pdf
Writing a Scientific Paper_20201109135720.pdf
Writing a Scientific Paper.pdf
Writing a Scientific Paper III. Experimental_20201109135839.pdf
Writing a Scientific Paper III. Experimental_20201109135732.pdf
Writing a Scientific Paper III. Experimental.pdf
Writing a Scientific Paper II. Introduction and References_20201109135836.pdf
Writing a Scientific Paper II. Introduction and References_20201109135719.pdf
Writing a Scientific Paper II. Introduction and References.pdf
Writing a Scientific Paper I. Titles and abstracts_20201109135843.pdf
Writing a Scientific Paper I. Titles and abstracts_20201109135724.pdf
Writing a Scientific Paper I. Titles and abstracts.pdf
Whitesides group-Writing a Paper_20201109135844.pdf
Whitesides group-Writing a Paper_20201109135723.pdf
Whitesides group-Writing a Paper.pdf
Research and Writing Skills_20201109135844.pdf
Research and Writing Skills_20201109135719.pdf
Research and Writing Skills.pdf
How to Write and Publish a Scientific Paper_20201109135842.chm
How to Write and Publish a Scientific Paper_20201109135721.chm
How to Write and Publish a Scientific Paper.chm
How to write and illustrate a scientific paper 2nd Edition_20201109135837.pdf
How to write and illustrate a scientific paper 2nd Edition.pdf
How to Write a World Class Paper (THEORETICAL)_20201109135837.pdf
How to Write a World Class Paper (THEORETICAL)_20201109135728.pdf
How to Write a World Class Paper (THEORETICAL).pdf
How to Write a World Class Paper (METHODOLOGY)_20201109135834.pdf
How to Write a World Class Paper (METHODOLOGY)_20201109135722.pdf
How to Write a World Class Paper (METHODOLOGY).pdf
How to Write a PhD Thesis_20201109135840.pdf
How to Write a PhD Thesis.pdf
Enjoy Writing your Science Thesis or Dissertation!_20201109135837.pdf
Enjoy Writing your Science Thesis or Dissertation!_20201109135724.pdf
Enjoy Writing your Science Thesis or Dissertation!.pdf
English as a tool in scientific manuscript_20201109135838.pdf
English as a tool in scientific manuscript_20201109135722.pdf
English as a tool in scientific manuscript.pdf
论文写作系列课程3-论文写作理论篇.pdf
论文写作系列课程2-投稿前准备.pdf
论文写作系列课程1-导论 (1).pdf
【5】研究生必读→如何撰写课程综述_20201109135834.pdf
【5】研究生必读→如何撰写课程综述.pdf
【4】研究生必读→如何选课和学习_20201109135840.pdf
【4】研究生必读→如何选课和学习.pdf
【3】研究生必读→如何积极的进行交流_20201109135837.pdf
【3】研究生必读→如何积极的进行交流_20201109135724.pdf
【3】研究生必读→如何积极的进行交流.pdf
【2】研究生必读→如何获得全文文献_20201109135837.pdf
【2】研究生必读→如何获得全文文献_20201109135722.pdf
【2】研究生必读→如何获得全文文献.pdf
【1】科研需要的九种关键能力_20201109135833.pdf
【1】科研需要的九种关键能力_20201109135717.pdf
【1】科研需要的九种关键能力.pdf
用来描述Table和Figure的句型.pdf
论文投稿前必须检查的28个细节.pdf
SCI写作中用来表示目标目的的句型.pdf
SCI写作中避免使用的词汇.pdf
SCI写作高大上句型1000例-9.pdf
SCI写作高大上句型1000例-8.pdf
SCI写作高大上句型1000例-7.pdf
SCI写作高大上句型1000例-6.pdf
SCI写作高大上句型1000例-5.pdf
SCI写作高大上句型1000例-4.pdf
SCI写作高大上句型1000例-3.pdf
SCI写作高大上句型1000例-2.pdf
SCI写作高大上句型1000例-10.pdf
SCI写作高大上句型1000例-1.pdf
SCI写作常用句型-2.pdf
SCI写作常用句型-1.pdf
SCI论文写作模板.pdf
Results写作常用句型及句式-2.pdf
Results写作常用句型及句式-1.pdf
Introduction写作常用句型及句式.pdf
Discussion写作常用句型及句式.pdf
Abstract写作常用句型及句式-2.pdf
Abstract写作常用句型及句式-1.pdf
英文文章一般写法(杂志主编讲).ppt
细节决定成败—对科技论文写作的点滴体会.ppt
如何在Elsevier期刊上发表文章.ppt
涸泽而渔--谈科学研究与学术论文撰写.ppt
国外论文投稿规范(外文版).ppt
【9】写好英语科技论文的诀窍.pdf
【8】以前博导教给我的写作“杀手锏”.pdf
【7】撰写外文论文的心得.pdf
【6】Abstract写作方法.pdf
【5】论文写作方法.pdf
【4】SCI论文全攻略.pdf
【3】How to Write a Scientific Paper.pdf
【2】写学术论文的技巧.pdf
【1】为你的论文进入美国SCI导航.pdf
【14】医学SCI科技论文撰写及投稿技巧.pdf
【13】写科研论文的最高境界.pdf
【12】科技论文英文摘要的撰写.pdf
【11】美国教授对中国学生写英文文章的建议.pdf
【10】写SCI文章的一点技巧.pdf
Twelve Steps to Developing an Effective First Draft of your Manuscript.pdf
How to write a world class paper 已阅并做笔记.ppt
How to Write a Great Research Paper.pdf
How to Write a Good Paper.pdf
【9】前辈的投稿经历.pdf
【8】科研学术论文投稿必备手册.pdf
【7】答复审稿人的策略和答复信的写作技巧.pdf
【6】SCI投稿切忌因小失大.pdf
【5】SCI投稿技巧.pdf
【4】发表论文实用手册(源自上海交大).pdf
【3】投稿信指南.pdf
【2】怎样投稿和处理投稿过程中出现的问题.pdf
【1】外文投稿常用语.pdf
【12】英文论文写作、投稿过程中的注意事项.pdf
【11】一稿多投与重复发表(已搜索无重复).pdf
【10】投稿、审稿以及修改稿件时的常用句型.pdf
答辩PPT模板30套
Stata软件安装包及教程
SPSS自学课程
SCI 写作套路化模板
R语言学习资料集
Python全套自学资料
LaTex论文排版软件
【04】Python优质网站网课资料籍推荐
【03】Python学习框架
【01】Python
Scrapy爬虫框架
python软件
Django框架
05 精选Python好资料
模式识别
机器视觉
大数据、机器学习类资料
Deep Learning中文版
语音识别与深度学习.pdf
游戏人工智能编程案例精粹.pdf
图像处理、分析与机器视觉
数据挖掘_概念与技术.pdf
神经网络与机器学习.pdf
深入理解机器学习 从原理到算法 2016.07 312 14093343.pdf
人工智能:一种现代方法(美)Stuart Russel.pdf
人工智能-复杂问题求解的结构和策略.pdf
机器学习实战.pdf
机器学习.pdf
概率统计--贝叶斯统计推断.pdf
Python自然语言处理.pdf
人工智能 腾讯研究院;中国信通院互联网法律研究中心
智能时代 .PDF
数学之美(第二版).PDF
人工智能时代.pdf
人工智能的未来.pdf
《人工智能-[精品]》.PDF
[人工智能的未来].(美)霍金斯&布拉克斯莉.扫描版.pdf
终极算法 机器学习和人工智能如何重塑世界.pdf
心智社会(ED2000.COM).pdf
未来简史.PDF
计算机与人脑.pdf
《奇点临近:当计算机智能超越人类》Ray Kurzweil 著.pdf
[AI:人工智能的本质与未来].(英)玛格丽特·博登..PDF
新版机器人技术手册 [日]日本机器人学会编
机器人手册
现代机器人学.pdf
机器人学导论.pdf
工业机器人结构设计.pdf
6-医疗方向
5-自然语言处理
4-3D视觉
3-计算机视觉
2-深度学习
1-机器学习
文件过多无法一一列举,欢迎下载学习!
9.Non-delusional Q-learning and value-iteration
8.Rates of Convergence for Sparse Variational Gaussian Process Regression
7.Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
6.Dropout A Simple Way to Prevent Neural Networks from Overfitting
5.Tidy Data
4.A Few Useful Things to Know about Machine Learning
3.Statistical Modeling The Two Cultures
25.Optimal and Adaptive Algorithms for Online Boosting
24.A Nearly-Linear Time Framework for Graph-Structured Sparsity
23.Dueling Network Architectures for Deep Reinforcement Learning
22.Pixel Recurrent Neural Networks
21.Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling
20.Matrix Completion has No Spurious Local Minimum
2.ImageNet Classification with Deep Convolutional Neural Networks
19.Value Iteration Networks
18.Understanding Black-box Predictions via Influence Functions
17.A Linear-Time Kernel Goodness-of-Fit Test
16.Variance-based regularization with convex objectives
15.Safe and Nested Subgame Solving for Imperfect-Information Games∗
14.Obfuscated Gradients Give a False Sense of Security Circumventing Defenses to Adversarial Examples
13.Delayed Impact of Fair Machine Learning
12.Neural Ordinary Differential Equations
11.Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes
10.Optimal Algorithms for Non-Smooth Distributed Optimization in Networks
1.Manifold Mixup Better Representations by Interpolating Hidden States
9.元学习
8.语音识别
7.异常检测
6.推荐系统
5.图神经网络
4.时间序列
3.人脸
2.机器人
10.知识蒸馏
1.对比学习
9.Learning to learn by gradient descent by gradient descent
8.Learning to Reweight Examples for Robust Deep Learning
7.Meta-SGD_ Learning to Learn Quickly for Few-Shot Learning
6.A Closer Look at Few-shot Classification
5.Meta-Dataset_ A Dataset of Datasets for Learning to Learn from Few Examples
4.On First-Order Meta-Learning Algorithms
3.Learning to Compare_ Relation Network for Few-Shot Learning
20.Meta-Learning for Semi-Supervised Few-Shot Classification
2.Prototypical Networks for Few-shot Learning
19.DiCE_ The Infinitely Differentiable Monte-Carlo Estimator
18.Learning to Generalize_ Meta-Learning for Domain Generalization
17.Meta-World_ A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning
16.Meta-Learning Representations for Continual Learning
15.Few-Shot Adversarial Learning of Realistic Neural Talking Head Models
14.ProMP_ Proximal Meta-Policy Search
13.Meta Pseudo Labels
12.Meta-Learning with Differentiable Convex Optimization
11.Learning to reinforcement learn
10.How to train your MAML
1.Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
9.wav2vec 2.0_ A Framework for Self-Supervised Learning of Speech Representations
8.Conformer_ Convolution-augmented Transformer for Speech Recognition
7.Recurrent Neural Network Regularization
6.Deep Speech_ Scaling up end-to-end speech recognition
5.Speech Commands_ A Dataset for Limited-Vocabulary Speech Recognition
4.Communication-Efficient Learning of Deep Networks from Decentralized Data
3.SpecAugment_ A Simple Data Augmentation Method for Automatic Speech Recognition
2.Deep Speech 2_ End-to-End Speech Recognition in English and Mandarin
10.Snips Voice Platform_ an embedded Spoken Language Understanding system for private-by-design voice interfaces
1.Listen, Attend and Spell
9.Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding
8.Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications
7.MURA_ Large Dataset for Abnormality Detection in Musculoskeletal Radiographs
6.Is Space-Time Attention All You Need for Video Understanding_
5.A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
4.Towards Total Recall in Industrial Anomaly Detection
3.PaDiM_ a Patch Distribution Modeling Framework for Anomaly Detection and Localization
2.DeepWalk_ Online Learning of Social Representations
10.GANomaly_ Semi-Supervised Anomaly Detection via Adversarial Training
1.Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
9.DeeperGCN_ All You Need to Train Deeper GCNs
8.A Fair Comparison of Graph Neural Networks for Graph Classification
7.Graph Construction from Data using Non Negative Kernel regression (NNK Graphs)
6.A Unified Framework for Structured Graph Learning via Spectral Constraints
5.GCC_ Graph Contrastive Coding for Graph Neural Network Pre-Training
4.Understanding Negative Sampling in Graph Representation Learning
3.OGB-LSC_ A Large-Scale Challenge for Machine Learning on Graphs
2.Graph Random Neural Network for Semi-Supervised Learning on Graphs
10.Generative 3D Part Assembly via Dynamic Graph Learning
1.Deep Graph Library_ A Graph-Centric, Highly-Performant Package for Graph Neural Networks
9.Multitask learning and benchmarking with clinical time series data
8.Learning Representations from EEG with Deep Recurrent-Convolutional Neural Networks
7.Diffusion Convolutional Recurrent Neural Network_ Data-Driven Traffic Forecasting
6.A Dual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction
5.N-BEATS_ Neural basis expansion analysis for interpretable time series forecasting
4.DeepAR_ Probabilistic Forecasting with Autoregressive Recurrent Networks
3.Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
20.Spatio-Temporal Graph Convolutional Networks_ A Deep Learning Framework for Traffic Forecasting
2.Diverse Beam Search_ Decoding Diverse Solutions from Neural Sequence Models
19.A log-linear time algorithm for constrained changepoint detection
18.Recurrent Neural Networks for Multivariate Time Series with Missing Values
17.Convolutional Radio Modulation Recognition Networks
16.Bayesian Online Changepoint Detection
15.Caulking the Leakage Effect in MEEG Source Connectivity Analysis
14.Multivariate LSTM-FCNs for Time Series Classification
13.Soft-DTW_ a Differentiable Loss Function for Time-Series
12.LSTM Fully Convolutional Networks for Time Series Classification
11.Time Series Classification from Scratch with Deep Neural Networks_ A Strong Baseline
10.Latent ODEs for Irregularly-Sampled Time Series
1.Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting
6.机器人抓取
5.视觉里程计
4.视觉导航
2.机器人导航
1.运动规划
6.DeepVO Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
5.PL-SLAM a Stereo SLAM System through the Combination of Points and Line Segments
4.A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors
3.The TUM VI Benchmark for Evaluating Visual-Inertial Odometry
2.ORB-SLAM2 an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras
1.The Double Sphere Camera Model
6.Corners for Layout End-to-End Layout Recovery from 360 Images
5.Gibson Env Real-World Perception for Embodied Agents
4.Crowd-Robot Interaction Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning
3.DD-PPO Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames
2.Depth Prediction Without the Sensors Leveraging Structure for Unsupervised Learning from Monocular Videos
1.Habitat A Platform for Embodied AI Research
6.Neural Contraction Metrics for Robust Estimation and Control A Convex Optimization Approach
5.PDDLStream Integrating Symbolic Planners and Blackbox Samplers via Optimistic Adaptive Planning
4.STRIPS Planning in Infinite Domains
3.Motion Planning Among Dynamic, Decision-Making Agents with Deep Reinforcement Learning
2.Learning Latent Dynamics for Planning from Pixels
1.Complex-YOLO Real-time 3D Object Detection on Point Clouds
9.TinyBERT_ Distilling BERT for Natural Language Understanding
8.Sequence-Level Knowledge Distillation
7.Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation
6.Grad-CAM++_ Improved Visual Explanations for Deep Convolutional Networks
5.FastSpeech 2_ Fast and High-Quality End-to-End Text to Speech
4.DistilBERT, a distilled version of BERT_ smaller, faster, cheaper and lighter
3.Well-Read Students Learn Better_ On the Importance of Pre-training Compact Models
20.Knowledge Distillation by On-the-Fly Native Ensemble
2.Distilling the Knowledge in a Neural Network
19.MicroExpNet_ An Extremely Small and Fast Model For Expression Recognition From Face Images
18.FitNets_ Hints for Thin Deep Nets
17.Open-vocabulary Object Detection via Vision and Language Knowledge Distillation
16.Rethinking Soft Labels for Knowledge Distillation_ A Bias-Variance Tradeoff Perspective
15.Distilling Knowledge from Reader to Retriever for Question Answering
14.On the Effect of Dropping Layers of Pre-trained Transformer Models
13.Network Pruning via Transformable Architecture Search
12.Distilling Knowledge via Knowledge Review
11.ProSelfLC_ Progressive Self Label Correction for Training Robust Deep Neural Networks
10.Paying More Attention to Attention_ Improving the Performance of Convolutional Neural Networks via Attention Transfer
1.Focal Loss for Dense Object Detection
9.Contrastive Learning for Unpaired Image-to-Image Translation
8.Self-Supervised Learning of Pretext-Invariant Representations
7.Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination
6.Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
5.SimCSE_ Simple Contrastive Learning of Sentence Embeddings
4.Supervised Contrastive Learning
3.Improved Baselines with Momentum Contrastive Learning
20.On Contrastive Learning for Likelihood-free Inference
2.Momentum Contrast for Unsupervised Visual Representation Learning
19.Self-labelling via simultaneous clustering and representation learning
18.Data-Efficient Image Recognition with Contrastive Predictive Coding
17.Parametric Contrastive Learning
16.Rethinking Self-supervised Correspondence Learning_ A Video Frame-level Similarity Perspective
15.Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup
14.Dense Contrastive Learning for Self-Supervised Visual Pre-Training
13.Contrastive Learning of Medical Visual Representations from Paired Images and Text
12.CURL_ Contrastive Unsupervised Representations for Reinforcement Learning
11.Contrastive Multiview Coding
10.Propagate Yourself_ Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning
1.A Simple Framework for Contrastive Learning of Visual Representations
文件过多无法一一列举,欢迎下载学习!————下面全都是文件夹名称,都包含若干文件!
自动驾驶
知识蒸馏
增量学习
噪声标签
元学习
语义分割
异常检测
医学影像
行为识别&动作识别&检测&分割&定位
行人重识别
小样本学习&零样本学习
显著性目标检测
文本检测&识别&理解
图像质量评估
图像特征提取与匹配
图像生成&图像合成
图像去噪&去模糊&去雨去雾
图像配准
图像计数
图像复原&图像增强&图像重建
图像分类
图像分割
图像处理
图像编辑&图像修复
图像&视频字幕
图像&视频检索&视频理解
图神经网络(GNN)
数据集
数据处理
手势估计
视听学习
视频预测
视频目标检测
视频目标分割
视频合成&视频生成
视频处理
视频超分
视频编辑
视觉推理&视觉问答
视觉定位&位姿估计
视觉表征学习
视觉-语言
实例分割
神经网络可解释性
神经网络结构设计
神经网络架构搜索(NAS)
深度估计
三维重建
三维视觉
人物交互检测
人体姿态估计
人脸识别&检测
人脸生成&合成&重建&编辑
人脸反欺骗
全景分割
强化学习
迁移学习&domain&自适应
其他
目标跟踪
模型压缩
模型训练&泛化
模型评估
密集预测
量化
联邦学习
剪枝
监督学习
机器人
光流&运动估计
风格迁移
多模态学习
对比学习
点云
持续学习
车道线检测
超分辨率
场景重建&视图合成&新视角合成
场景图
长尾分布
边缘检测
WACV 2023
Transformer
GAN&生成式&对抗式
CNN
AIGC
3D目标检测
2D目标检测
文件过多无法一一列举,欢迎下载学习!



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群