Manning.Grokking.Deep.Learning.pdf 13.7 MB
+Grokking-Deep-Learning-源代码 75.0 MB
spam.txt 10.3 MB
shakespear.txt 97.6 KB
reviews.txt 32.1 MB
README.md 3.4 KB
MNISTPreprocessor.ipynb 7.1 KB
labels.txt 220.0 KB
ham.txt 20.2 MB
floyd.yml 33 Byte
docker-compose.yml 581 Byte
Chapter9 - Intro to Activation Functions - Modeling Probabilities.ipynb 5.2 KB
Chapter8 - Intro to Regularization - Learning Signal and Ignoring Noise.ipynb 21.1 KB
Chapter6 - Intro to Backpropagation - Building Your First DEEP Neural Network.ipynb 23.5 KB
Chapter5 - Generalizing Gradient Descent - Learning Multiple Weights at a Time.ipynb 12.0 KB
Chapter4 - Gradient Descent - Intro to Neural Learning.ipynb 89.8 KB
Chapter3 - Forward Propagation - Intro to Neural Prediction.ipynb 16.2 KB
Chapter15 - Intro to Federated Learning - Deep Learning on Unseen Data.ipynb 44.4 KB
Chapter14 - Intro to LSTMs - Part 2 - Learn to Write Like Shakespeare.ipynb 42.4 KB
Chapter14 - Intro to LSTMs - Learn to Write Like Shakespeare.ipynb 54.1 KB
Chapter14 - Exploding Gradients Examples.ipynb 3.7 KB
Chapter13 - Intro to Automatic Differentiation - Let's Build A Deep Learning Framework.ipynb 76.7 KB
Chapter12 - Intro to Recurrence - Predicting the Next Word.ipynb 17.1 KB
Chapter11 - Intro to Word Embeddings - Neural Networks that Understand Language.ipynb 16.2 KB
Chapter10 - Intro to Convolutional Neural Networks - Learning Edges and Corners.ipynb 20.8 KB
.gitignore 255 Byte
+tasksv11 11.5 MB
README 2.9 KB
LICENSE 19.1 KB
+shuffled 5.8 MB
+en 5.8 MB