全部版块 我的主页
论坛 提问 悬赏 求职 新闻 读书 功能一区 经管文库(原现金交易版)
165 0
2024-12-31
几类脉冲随机泛函微分系统的可控性与稳定性
本文主要研究Hilbert空间框架下四类时滞依赖于状态的无穷维随机中立型泛函微分系统温和解的存在性和可控性;另外,还讨论了一类具Markov调制的脉冲随机泛函微分系统的p阶矩指数稳定性.本文所做的主要工作包括以下几个方面:第一章概述了有限维随机微分方程和无穷维随机微分系统的研究现状和意义.第二章简要介绍了与本论文相关的预备知识,主要包括随机微分方程理论、Q-Wiener过程与无穷维随机积分、泊松点过程和泊松随机测度、积分微分(发展)方程与预解算子理论、二阶抽象微分方程理论、几个常用的不动点定理与不等式.第三章研究了一类时滞依赖于状态的一阶脉冲中立型随机积分微分方程解的存在性和可控性.在预解算子非紧的前提下,利用不动点定理、解析预解算子理论、分数阶算子理论和α模理论,在合适的条件下获得了温和解的存在性和系统可控性.最后,以带有退化记忆的随机热传导方程为例,说明结果的有效性.第四章考虑了一类时滞依赖于状态的一阶脉冲中立型随机积分微分发展方程解的存在性和可控性.利用Banach不动点定理、Sadovskii不动点定理和解析预解算子理论,在合适的条件下 ...
附件列表
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群