数学教案-定理与证明(一)
教学建议
(一)教材分析
1、学问构造
2、重点、难点分析
重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的力量,在今后的学习中将会有大量的证明问题;另一方面它还表达了数学的规律性和严谨性.
难点:推论证明的思路和方法.由于它表达了学生的抽象思维力量,由于学生对规律的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.
(二) 教学建议
1、四个留意
(1)留意:①公理是通过长期实践反复验证过的,不需要再进展推理论证而都成认的真命题;②公理可以作为判定其他命题真假的依据.
(2)留意:定理都是真命题,但真命题不肯定都是定理.一般选择一些最根本最常用的真命题作为定理,可以以它们为依据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.
(3)留意:在几何问题的讨论上,必需经过证明,才能作出真实牢靠的推断.如“两直线平行,同位角相等”这个命题,假如只采纳测量的方法.只能测量有限个两平行直线的同位角是相等的.但采纳推理方法证明两平行直线的同位角相等,那么就可以确 ...
附件列表