bbslover 发表于 2016-5-28 21:42 
这些基本问题,实在是很不好回答,你自己百度goole都有一步一步的办法。
点击·base·之后,就能下载win ...
或者您懂这些具体的语句吗 最后多了两行输出的
>
> ## Do not run
>
> # set.seed(150520)
>
> # data(enzyme)
>
> # x <- enzyme
>
> # Enzyme1.out <- MixNRMI1(x, Alpha = 1, Beta = 0.007, Gama = 0.5,
>
> # distr.k = 2, distr.p0 = 2, asigma = 1, bsigma = 1, Meps=0.005,
>
> # Nit = 5000, Pbi = 0.2)
>
> # The output of this run is already loaded in the package
>
> # To show results run the following
>
> # Data
>
> data(enzyme)
>
> x <- enzyme
>
> data(Enzyme1.out)
>
> attach(Enzyme1.out)
>
> # Plotting density estimate + 95% credible interval
>
> m <- ncol(qx)
>
> ymax <- max(qx[,m])
>
> par(mfrow=c(1,1))
>
> hist(x,probability=TRUE,breaks=20,col=grey(.9),ylim=c(0,ymax))
>
> lines(xx,qx[,1],lwd=2)
>
> lines(xx,qx[,2],lty=3,col=4)
>
> lines(xx,qx[,m],lty=3,col=4)
>
> # Plotting number of clusters
>
> par(mfrow=c(2,1))
>
> plot(R,type="l",main="Trace of R")
>
> hist(R,breaks=min(R-0.5):max(R+0.5),probability=TRUE)
>
> # Plotting sigma par(mfrow=c(2,1))
>
> plot(S,type="l",main="Trace of sigma")
>
> hist(S,nclass=20,probability=TRUE,main="Histogram of sigma")
>
> # Plotting u
>
> par(mfrow=c(2,1))
>
> plot(U,type="l",main="Trace of U")
>
> hist(U,nclass=20,probability=TRUE,main="Histogram of U")
>
> # Plotting cpo
>
> par(mfrow=c(2,1))
>
> plot(cpo,main="Scatter plot of CPO's")
>
> boxplot(cpo,horizontal=TRUE,main="Boxplot of CPO's")
>
> print(paste('Average log(CPO)=',round(mean(log(cpo)),4)))
[1] "Average log(CPO)= -0.2679"
>
> print(paste('Median log(CPO)=',round(median(log(cpo)),4)))
[1] "Median log(CPO)= 0.3137"
>
> detach()
>