西南大学2002年数学分析试题
解:
(5)、运用格林公式
$P=2xy-2y,\frac{\partial P}{\partial y}=2x-2,$
$Q=x^2-4x,\frac{\partial Q}{\partial x}=2x-4,$
$\oint_L (2xy-2y)dx+(x^2-4x)dy=\iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dxdy=-2\iint_Ddxdy=-18\pi.$
(6)、
$\because f(x)=3x^2+2\int_{0}^{1}f(x)dx,$
$\therefore \int_{0}^{1}f(x)dx=\int_{0}^{1}3x^2dx+2\int_{0}^{1}f(x)dx,$
$\Rightarrow \int_{0}^{1}f(x)dx=-1,$
因此
$\int_{1}^{2}f(x)dx=\int_{1}^{2}3x^2dx+2\int_{0}^{1}f(x)dx=x^3|_1^2-2=5.$
(7)、
$I=\int_{0}^{1}\sqrt{2x-x^2}dx=-\int_{0}^{1}\sqrt{1-(1-x)^2}d(1-x),$
作变量代换
$1-x=\cos t,dx=\sin tdt,[0,1]\rightarrow [\frac{\pi}{2},0] ,$
$\therefore I=-\int_{\frac{\pi}{2}}^{0}\sqrt{1-\cos^2t}\sin tdt=\int_{0}^{\frac{\pi}{2}}\sin^2tdt=\int_{0}^{\frac{\pi}{2}}\frac{1-\cos2t}{2}dt=\frac{\pi}{4}.$
(8)、
$\begin{align*}I&=\int_{0}^{2}dx\int_{x}^{2}e^{-y^2}dy\\\\&=\int_{0}^{2}e^{-y^2}dy\int_{0}^{x}dx\\\\&=\int_{0}^{2}ye^{-y^2}dy\\\\&=-\frac{1}{2}e^{-y^2}|_0^2\\\\&=\frac{1}{2}(1-e^{-4}).
\end{align*}$