全部版块 我的主页
论坛 数据科学与人工智能 人工智能 机器学习
1056 0
2020-11-30
CDA人工智能学院致力于以优质的人工智能在线教育资源助力学员的DT职业梦想!课程内容涵盖数据分析机器学习深度学习人工智能tensorFlowPyTorch知识图谱等众多核心技术及行业案例,让每一个学员都可以在线灵活学习,快速掌握AI时代的前沿技术。PS:私信我即可获取CDA会员1个月免费试听机会

神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。神经网络用途极其广泛,本文采用神经网络算法用于金融领域量化选股策略。

神经网络原理

神经网络中最基本的成分是神经元模型,在生物神经网络中,每个神经元与其他神经元相连,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元的电位;如果某神经元的电位超过了一个“阈值”,那么它就会被激活,即“兴奋”起来,向其他神经元发送化学物质。下图为M-P神经元模型:

20180728085326_53835.png

在这个模型中,神经元接收到来自n个其他神经元传递过来的输入信号,这些输入信号通过带权重的连接进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”处理以产生神经元的输出。

20180728085321_34689.png

理想中的激活函数是上图中的(a)阶跃函数,它将输入值映射为输出值“0”或“1”,显然“1”代表神经元兴奋,“0”代表神经元抑制,但由于其不连续,不光滑的性质,所以实际常用(b)Sigmoid函数作为激活函数。把许多个这样的神经元按一定的层次结构连接起来,就得到了神经网络。

基于神经网络的量化选股策略

策略思想:选取一些常用技术指标作为训练样本特征集,对于类别,如果未来20个工作日上涨幅度超过10%则标记为1,否则为-1,采用神经网络算法进行训练,预测结果为1且未持仓则买入,预测结果为-1且已持仓则卖出。

特征因子选取:本文采用神经网络算法解决有监督学习的分类问题,特征因子选取了2015-01-05那天上证50指数成份股的总市值,OBV能量潮,市盈率,布林线,KDJ随机指标,RSI相对强弱指标共6个指标。

数据标准化:数据标准化方法有很多,本文采用高斯预处理方法,即每个特征因子减去它对应的均值再除以它的标准差((x-x.mean)/x.std)。

0D04CBB8996CB009643B8D6FD844F0C0.jpg

关注“CDA人工智能学院”,回复“录播”获取更多人工智能精选直播视频!


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群