全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件 Stata专版
567 0
2022-01-07

I. FillingBlanks28%


Fill in the blanks in the following table. Keepall results to 4 decimal places.  



  

Source  

  

SS  



df  



MS  



Number of obs



=



9  



F(1, 49302)  



=



10  



Model  



1  



2  



3  



Prob >  F



=



0.000  



Residual  



4  



5  



6  



R-squared



=



0.0009  



Total  



10727.3883  



7  



8  



Adj R-squared



=



11  



Root MSE  



=



12  




  

Y  

  

Coef.



Std. Err.



t



P>|t|



[95% Conf.  Interval]  



X  



-.0017457



.0002662



13  



0.000



15  



17  



_cons  



5.689695



.002235



14  



0.000



16  



18  



考点:回归分析结果阅读(28分)

  

1. 回归结果:离差

  

  

2. 模型显著性



Source



SS  平方和



  df 自由度



MS 均方






Number of obs



=



49304






F(1, 49302)



=



44.4118



Model



9.6546



1



9.6546






Prob > F



=



0



Residual



10717.7337



49302



0.2174






R-squared



=



0.0009



Total



10727.3883



49303



0.2176






Adj R-squared



=



0.0009






Root MSE  



=



0.4663











3.  关键回归结果:标准误、t检验值、t检验的p值,置信区间



Y



Coef.



Std.Err.



t






P>|t|



[95% Conf.Interval]



Xj



-0.0017457



0.0002662



-6.5579



  

0.000



-0.0023



-0.0012



_cons



5.689695



0.002235



2545.7248






0.000



5.6853



5.6941





II. Questions and Brief Answers 42%  

1. Given a standardized normaldistribution (with a mean of 0 and a standard deviationof 1), what is the probabilitythat (8%)  

a. Z is less than 1.08?  

b. Z is greater than -0.21?  

c. Z is less than -0.21 or greater than the mean?  d. Z is less than-0.21 or greater than 1.08?  

考点:概率的概念,查累计标准分布表(Z值表)(8分)

SOLUTION:

a.     P(Z<1.08) =0.8599=85.99%

b.     P(Z>-0.21)=1-P(Z<=-0.21)=1-0.4207=0.5793


c.     P(Z<-0.21 orZ>0)=P(Z<-0.21)+P(Z>0)=P(Z<-0.21)+[1-P(Z<=0)]=0.4207+(1-0.5)=0.9207

d.     P(Z<-0.21 or Z>1.08)=P(Z<-0.21)+[1-P(Z<=1.08)]=0.4207+(1-0.8599)=0.5608


1  




2. Many manufacturing problems involve thematching of machine parts, such as shaftsthat fit into a valve hole. A particular design requires a shaft with a diameter of 22.000 mm, but shafts withdiameters between 21.990 mm and22.010 mm are  
acceptable. Suppose that the manufacturing processyields shafts with diameters normally distributed, with a mean of 22.002 mm and a standard deviation of 0.005mm. For this process, what is (8%)  

a. the proportion ofshafts with a diameter between 21.99 mm and 22.00mm?   

b. the probability that ashaft is acceptable?  

c. the diameter that will be exceeded by only2% of the shafts?  

d. What would be your answersin (a) through (c) if the standard deviation of the shaft diameters were 0.004 mm?  


考点:简单Z值计算,抽样与抽样分布;一般模型向正态分布模型的转化,以及结果的还原或呈现。(8分)

读题:

1.    设计要求为22.000mm,可接受的均值μ区间为[21.990, 22.010];

2.    题中的样本是正态分布的,样本均值为22.002mm,标准差为0.005mm。

SOLUTION

a.     转化为Z值,求概率。
Using equation: 普通的正态分布——>标准正态分布的一个变换



Z-values fordiameter=21.99mm and diameter=22.00mm are respectively -2.4 and -0.4.


P(21.99mm<=diameter<=22.00mm) = P(-2.4<=Z<=-0.4)=P (-0.4)-P (-2.4) = 0.3446- 0.0207=0.3239


So, the proportionof shafts with a diameter between 21.99 mm and 22.00 mm is 32.39%.


b.     A shaft is acceptable when its diameter is between 21.990mm and22.010mm.


Similar to thesolution in (a.),


P(21.990mm<=diameter<=22.010mm) =P(-2.4<=Z<=1.6) =P (1.6)-P (-2.4) =0.9515-0.0207=0.9308


So, the proportionthat a shaft is acceptable is 93.08%.


c.     For the diameter thatwill be exceeded by only 2% of the shafts, the Z-value represents the probabilityof 98%, which equals to 2.05(or 2.06, 2.05 is preferred).


Using equation:




So, the diameter that willbe exceeded by only 2% of the shafts is 22.01225mm.


d.     If the standarddeviation of the shaft diameters were 0.004 mm:


a)     For a., Z-values for diameter=21.99mmand diameter=22.00mm are respectively -3 and -0.32.

P(21.99mm<=diameter<=22.00mm)= P(-3<=Z<=-0.32) =P (-0.32)-P (-3) = 0.3745 - 0.00135 = 0.37315

So, the proportionof shafts with a diameter between 21.99 mm and 22.00 mm is 37.32%.



b)     For c., using equation:



So, thediameter that will be exceeded by only 2% of the shafts is 22.0102mm.



2                                                                                                                                   






二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群