# r2_dict = {} # r2_list = [] # for i in range(1, 33): # for j in range(1, 17): # for k in range(1, 9): # ann = MLPRegressor(hidden_layer_sizes=(i, j, k), activation='relu', solver='adam', # alpha=0.001, # max_iter=10000) # ann.fit(X_train, Y_train) # y_test_pred = ann.predict(X_test) # r2 = 1 - sum((Y_test - y_test_pred) ** 2) / sum(Y_test ** 2) # r2_list.append(r2) # r2_dict[r2] = (i, j, k) # print('神经网络3', (i, j, k), r2_dict[max(r2_list)], max(r2_list))
ann3 = MLPRegressor(hidden_layer_sizes=(2, 10, 1), activation='relu', solver='adam', alpha=0.001, max_iter=10000) ann3.fit(X_train, Y_train) y_test_pred = ann3.predict(X_test) r2 = 1 - sum((Y_test - y_test_pred) ** 2) / sum(Y_test ** 2) print(r2)
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
正直者之死 发表于 2022-2-22 15:21 个人感觉是第一段网格搜索时MLPRegressor初始化的权重和偏置矩阵和第二段代码不一致的原因 可以考虑向MLP ...