全部版块 我的主页
论坛 经济学人 二区 外文文献专区
501 0
2022-03-01
摘要翻译:
在这个小注中,我们使用Berestycki等人的结果。修正Hagan等人的著名公式。我们明确地导出了隐含波动率在到期日的扩展中正确的零阶项。新术语是从$\beta\到1$一致的。此外,数值模拟表明,它减少或消除了先前公式的已知病态。
---
英文标题:
《Fine-tune your smile: Correction to Hagan et al》
---
作者:
Jan Obloj
---
最新提交年份:
2008
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--

---
英文摘要:
  In this small note we use results derived in Berestycki et al. to correct the celebrated formulae of Hagan et al. We derive explicitly the correct zero order term in the expansion of the implied volatility in time to maturity. The new term is consistent as $\beta\to 1$. Furthermore, numerical simulations show that it reduces or eliminates known pathologies of the earlier formula.
---
PDF链接:
https://arxiv.org/pdf/0708.0998
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群