摘要翻译:
用Monte Carlo模拟研究了双线性-双二次相互作用下三角晶格上经典Heisenberg反铁磁体的有序性。结果表明,在有限温度下,该模型在拓扑稳定涡的驱动下呈现拓扑相变,而自旋关联长度在转变点及其以下仍然是有限的。相关的涡旋可以是三种不同的类型,这取决于双二次耦合的值。讨论了对最近三角形反铁磁体NiGa$2$S$4$实验的影响。
---
英文标题:
《Vortex-induced topological transition of the bilinear-biquadratic
Heisenberg antiferromagnet on the triangular lattice》
---
作者:
Hikaru Kawamura and Atsushi Yamamoto
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Materials Science 材料科学
分类描述:Techniques, synthesis, characterization, structure. Structural phase transitions, mechanical properties, phonons. Defects, adsorbates, interfaces
技术,合成,表征,结构。结构相变,力学性质,声子。缺陷,吸附质,界面
--
---
英文摘要:
The ordering of the classical Heisenberg antiferromagnet on the triangular lattice with the the bilinear-biquadratic interaction is studied by Monte Carlo simulations. It is shown that the model exhibits a topological phase transition at a finite-temperature driven by topologically stable vortices, while the spin correlation length remains finite even at and below the transition point. The relevant vortices could be of three different types, depending on the value of the biquadratic coupling. Implications to recent experiments on the triangular antiferromagnet NiGa$_2$S$_4$ is discussed.
---
PDF链接:
https://arxiv.org/pdf/704.0974