摘要翻译:
我们证明了Riemann球面上具有有限个正则奇点和一个秩为1的不规则奇点的可积连接的Nahm变换等价于极小Laplace变换--直到将可积连接看作完整的D-模。我们假设半简单性和无共振性条件,我们在具有抛物线结构的物体框架中工作。特别地,我们描述了由C.Sabbah引起的Laplace变换的抛物线型的定义。主要结果的证明依赖于对扭曲的de Rham复形的研究。
---
英文标题:
《Nahm transform and parabolic minimal Laplace transform》
---
作者:
Szilard Szabo
---
最新提交年份:
2011
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that Nahm transform for integrable connections with a finite number of regular singularities and an irregular singularity of rank 1 on the Riemann sphere is equivalent -- up to considering integrable connections as holonomic $\D$-modules -- to minimal Laplace transform. We assume semi-simplicity and resonance-freeness conditions, and we work in the framework of objects with a parabolic structure. In particular, we describe the definition of the parabolic version of Laplace transform due to C. Sabbah. The proof of the main result relies on the study of a twisted de Rham complex.
---
PDF链接:
https://arxiv.org/pdf/0704.2744