摘要翻译:
用户所处环境的检测对于日常生活活动(ADL)的识别有着极其重要的意义。ADL可以通过使用在许多现成的移动设备中可用的传感器来识别,包括磁传感器和运动传感器,环境也可以使用声学传感器来识别。本文的研究分为两个部分:首先,我们讨论了利用声学传感器(即麦克风)识别环境;其次,我们将这些信息与运动和磁传感器(即运动和磁传感器)融合,用于日常生活活动的识别。利用模式识别技术对环境和ADL进行识别,以开发一个集数据采集、数据处理、数据融合和人工智能方法于一体的系统。本研究所探索的人工智能方法是由不同类型的人工神经网络(ANN)组成,比较不同类型的ANN,选择最佳的方法在系统开发的不同阶段实施。结论:应用深度神经网络(DNN)和归一化数据识别ADL的准确率为85.89%;应用前馈
神经网络和非归一化数据识别环境的准确率为86.50%;应用DNN和归一化数据识别站立活动的准确率为100%。
---
英文标题:
《User Environment Detection with Acoustic Sensors Embedded on Mobile
Devices for the Recognition of Activities of Daily Living》
---
作者:
Ivan Miguel Pires, Nuno M. Garcia, Nuno Pombo, and Francisco
Fl\'orez-Revuelta
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Sound 声音
分类描述:Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
涵盖了声音计算的各个方面,以及声音作为一种信息通道。包括声音模型、分析和合成、音频用户界面、数据的可听化、计算机音乐和声音信号处理。包括ACM学科类H.5.5,并与H.1.2、H.5.1、H.5.2、I.2.7、I.5.4、I.6.3、J.5、K.4.2交叉。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的
深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
---
英文摘要:
The detection of the environment where user is located, is of extreme use for the identification of Activities of Daily Living (ADL). ADL can be identified by use of the sensors available in many off-the-shelf mobile devices, including magnetic and motion, and the environment can be also identified using acoustic sensors. The study presented in this paper is divided in two parts: firstly, we discuss the recognition of the environment using acoustic sensors (i.e., microphone), and secondly, we fuse this information with motion and magnetic sensors (i.e., motion and magnetic sensors) for the recognition of standing activities of daily living. The recognition of the environments and the ADL are performed using pattern recognition techniques, in order to develop a system that includes data acquisition, data processing, data fusion, and artificial intelligence methods. The artificial intelligence methods explored in this study are composed by different types of Artificial Neural Networks (ANN), comparing the different types of ANN and selecting the best methods to implement in the different stages of the system developed. Conclusions point to the use of Deep Neural Networks (DNN) with normalized data for the identification of ADL with 85.89% of accuracy, the use of Feedforward neural networks with non-normalized data for the identification of the environments with 86.50% of accuracy, and the use of DNN with normalized data for the identification of standing activities with 100% of accuracy.
---
PDF链接:
https://arxiv.org/pdf/1711.00124