摘要翻译:
发展线性代数群的基本结构理论(根系、Bruhat分解等)可以绕过标准发展中的几个主要步骤,包括Borel子群的自规格化性质。
---
英文标题:
《Linear Algebraic Groups without the Normalizer Theorem》
---
作者:
Daniel Allcock
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
One can develop the basic structure theory of linear algebraic groups (the root system, Bruhat decomposition, etc.) in a way that bypasses several major steps in the standard development, including the self-normalizing property of Borel subgroups.
---
PDF链接:
https://arxiv.org/pdf/0708.1969