全部版块 我的主页
论坛 经济学人 二区 外文文献专区
348 0
2022-03-04
摘要翻译:
本文针对稳定模型语义下的Smodels程序,定制了Gaifman-Shapiro风格的模块体系结构。Smodels程序模块的组成受到模块条件的适当限制,保证了模块系统与稳定模型的兼容性。因此,整个Smodels程序的语义直接依赖于分配给其模块的稳定模型。这一结果被形式化为一个模定理,它真正地加强了Lifschitz和Turner的分裂集定理在Smodels程序类中的应用。为了简化将来的推广,首先证明了标准程序的模定理,然后通过从后一类程序到前一类程序的转换,将模定理推广到复盖Smodels程序。此外,模块级等价的相应概念,即模块等价,被证明是一个适当的同余关系:它在模块等价的模块的替换下保持不变。本文还讨论了程序分解的原理。当没有关于程序的模块的显式先验知识时,可以利用相应依赖图的强连接分量来提取模块结构。本文包括一个实际的演示工具,已开发的自动化(de)组成的Smodels程序。出现在逻辑程序设计的理论和实践中。
---
英文标题:
《Achieving compositionality of the stable model semantics for Smodels
  programs》
---
作者:
Emilia Oikarinen, Tomi Janhunen
---
最新提交年份:
2008
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  In this paper, a Gaifman-Shapiro-style module architecture is tailored to the case of Smodels programs under the stable model semantics. The composition of Smodels program modules is suitably limited by module conditions which ensure the compatibility of the module system with stable models. Hence the semantics of an entire Smodels program depends directly on stable models assigned to its modules. This result is formalized as a module theorem which truly strengthens Lifschitz and Turner's splitting-set theorem for the class of Smodels programs. To streamline generalizations in the future, the module theorem is first proved for normal programs and then extended to cover Smodels programs using a translation from the latter class of programs to the former class. Moreover, the respective notion of module-level equivalence, namely modular equivalence, is shown to be a proper congruence relation: it is preserved under substitutions of modules that are modularly equivalent. Principles for program decomposition are also addressed. The strongly connected components of the respective dependency graph can be exploited in order to extract a module structure when there is no explicit a priori knowledge about the modules of a program. The paper includes a practical demonstration of tools that have been developed for automated (de)composition of Smodels programs.   To appear in Theory and Practice of Logic Programming.
---
PDF链接:
https://arxiv.org/pdf/0809.4582
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群