摘要翻译:
本文对稳定曲线的两个不同模空间之间有理映射的交集理论进行了研究,该有理映射与一条曲线对应的Brill-Noether轨迹(在该轨迹为虚维数为1的情况下)相关联。然后我们用这些结果来描述M_g上运动因子的锥。给出了Prym变体模空间的几个其他应用。在不同的方向上,我们证明了对于每一种可能的线性级数,不满足Gieseker-Petri定理的曲线M_g中的轨迹在余维1上是支持的。
---
英文标题:
《Rational maps between moduli spaces of curves and Gieseker-Petri
divisors》
---
作者:
Gavril Farkas
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We perform an intersection theoretic study of the rational map between two different moduli spaces of stable curves which associates to a curve its corresponding Brill-Noether locus (in the case this locus has virtual dimension 1). We then use these results to describe the cone of moving divisors on M_g. Several other applications to moduli spaces of Prym varieties are presented. In a different direction, we prove that the locus in M_g of curves failing to satisfy the Gieseker-Petri theorem is supported in codimension 1 for every possible type of linear series.
---
PDF链接:
https://arxiv.org/pdf/0708.4188