摘要翻译:
本文研究具有随机违约时间的倒向随机微分方程及其在违约风险中的应用。这些方程由布朗运动以及出现在默认设置中的相互独立的鞅驱动。我们证明了这些方程有唯一解,并证明了它们解的一个比较定理。作为应用,我们得到了相关零和随机微分对策问题的鞍点策略。
---
英文标题:
《BSDEs with random default time and their applications to default risk》
---
作者:
Shige Peng, Xiaoming Xu
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
In this paper we are concerned with backward stochastic differential equations with random default time and their applications to default risk. The equations are driven by Brownian motion as well as a mutually independent martingale appearing in a defaultable setting. We show that these equations have unique solutions and a comparison theorem for their solutions. As an application, we get a saddle-point strategy for the related zero-sum stochastic differential game problem.
---
PDF链接:
https://arxiv.org/pdf/0910.2091