摘要翻译:
我们考虑每个停止时间$S$由$v(S)=\esssup\{e[\psi(\tau_1,\tau_2)\f_s],\tau_1,\tau_2\geq S}$定义的最优双停止时间问题。在最优一次停车时间问题的基础上,研究了最优停车时间的存在性,并给出了最优停车时间的计算方法。关键点是构造一个{\em新奖励}$\phi$,这样值函数$v(S)$满足$v(S)=\esssup\{e[\phi(\tau)\f_s],\tau\geqs\}$。最后,我们给出了一个具有双倍行权时间的美式期权的例子。
---
英文标题:
《Optimal double stopping time》
---
作者:
Magdalena Kobylanski (LAMA), Marie-Claire Quenez (PMA), Elisabeth
Rouy-Mironescu (ICJ)
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We consider the optimal double stopping time problem defined for each stopping time $S$ by $v(S)=\esssup\{E[\psi(\tau_1, \tau_2) | \F_S], \tau_1, \tau_2 \geq S \}$. Following the optimal one stopping time problem, we study the existence of optimal stopping times and give a method to compute them. The key point is the construction of a {\em new reward} $\phi$ such that the value function $v(S)$ satisfies $v(S)=\esssup\{E[\phi(\tau) | \F_S], \tau \geq S \}$. Finally, we give an example of an american option with double exercise time.
---
PDF链接:
https://arxiv.org/pdf/0909.3363