全部版块 我的主页
论坛 经济学人 二区 外文文献专区
582 0
2022-03-06
摘要翻译:
利用非线性Schroedinger波动方程提出了一个理论量子脑模型。该模型提出,存在一个量子过程,介导神经晶格(经典大脑)的集体反应。该模型用于解释跟踪运动目标时的眼动。利用递归量子神经网络(RQNN)模拟量子大脑模型,观察到两个非常有趣的现象。首先,当眼睛传感器数据在经典大脑中处理时,量子大脑中会触发一个波包。这个波包像粒子一样运动。其次,当眼睛跟踪一个固定目标时,这个波包不是以连续的方式运动,而是以离散的方式运动。这个结果让人想起眼睛的扫视运动,包括“跳跃”和“休息”。然而,当眼睛必须跟踪动态轨迹时,这样的扫视运动与平滑的追逐运动交织在一起。从某种意义上说,这是第一个解释静态场景下眼动实验观察的理论模型。结果发现,与经典的目标建模方案如卡尔曼滤波相比,预测是非常精确和有效的。
---
英文标题:
《Quantum Brain: A Recurrent Quantum Neural Network Model to Describe Eye
  Tracking of Moving Targets》
---
作者:
Laxmidhar Behera, Indrani Kar and Avshalom Elitzur
---
最新提交年份:
2004
---
分类信息:

一级分类:Quantitative Biology        数量生物学
二级分类:Neurons and Cognition        神经元与认知
分类描述:Synapse, cortex, neuronal dynamics, neural network, sensorimotor control, behavior, attention
突触,皮层,神经元动力学,神经网络,感觉运动控制,行为,注意
--
一级分类:Quantitative Biology        数量生物学
二级分类:Other Quantitative Biology        其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--

---
英文摘要:
  A theoretical quantum brain model is proposed using a nonlinear Schroedinger wave equation. The model proposes that there exists a quantum process that mediates the collective response of a neural lattice (classical brain). The model is used to explain eye movements when tracking moving targets. Using a Recurrent Quantum Neural Network(RQNN) while simulating the quantum brain model, two very interesting phenomena are observed. First, as eye sensor data is processed in a classical brain, a wave packet is triggered in the quantum brain. This wave packet moves like a particle. Second, when the eye tracks a fixed target, this wave packet moves not in a continuous but rather in a discrete mode. This result reminds one of the saccadic movements of the eye consisting of 'jumps' and 'rests'. However, such a saccadic movement is intertwined with smooth pursuit movements when the eye has to track a dynamic trajectory. In a sense, this is the first theoretical model explaining the experimental observation reported concerning eye movements in a static scene situation. The resulting prediction is found to be very precise and efficient in comparison to classical objective modeling schemes such as the Kalman filter.
---
PDF链接:
https://arxiv.org/pdf/q-bio/0407001
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群