摘要翻译:
本文提出了一种利用线性调频超声信号,利用单发射机和单接收机对预定义的手势进行检测和分类的新方法。基于来自手的反射信号的估计范围和接收信号强度(RSS)来识别手势。将支持向量机(SVM)用于手势检测和分类。该系统在实验装置上进行了测试,平均准确度达到88%。
---
英文标题:
《Hand Gesture Recognition Using Ultrasonic Waves》
---
作者:
Mohammed H. AlSharif, Mohamed Saad, Tareq Y. Al-Naffouri
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This paper presents a new method for detecting and classifying a predefined set of hand gestures using a single transmitter and a single receiver utilizing a linearly frequency modulated ultrasonic signal. Gestures are identified based on estimated range and received signal strength (RSS) of reflected signal from the hand. Support Vector Machine (SVM) was used for gesture detection and classification. The system was tested using experimental setup and achieved an average accuracy of 88%.
---
PDF链接:
https://arxiv.org/pdf/1710.08623