全部版块 我的主页
论坛 经济学人 二区 外文文献专区
503 0
2022-03-06
摘要翻译:
2016年,美国大多数全职女性的收入明显低于可比男性。然而,妇女受收入方面两性不平等影响的程度在很大程度上取决于社会经济特征,如婚姻状况或教育程度。在本文中,我们分析了2016年美国社区调查的数据,使用高维工资回归并应用双套索来量化性别工资差距的异质性。我们发现,女性之间的差异很大,主要是由婚姻状况、家中是否有孩子、种族、职业、行业和教育程度造成的。我们建议决策者利用这些见解制定政策,更有效地减少歧视和不平等报酬。
---
英文标题:
《Closing the U.S. gender wage gap requires understanding its
  heterogeneity》
---
作者:
Philipp Bach, Victor Chernozhukov, Martin Spindler
---
最新提交年份:
2021
---
分类信息:

一级分类:Economics        经济学
二级分类:Econometrics        计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Statistics        统计学
二级分类:Machine Learning        机器学习
分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding
覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础
--

---
英文摘要:
  In 2016, the majority of full-time employed women in the U.S. earned significantly less than comparable men. The extent to which women were affected by gender inequality in earnings, however, depended greatly on socio-economic characteristics, such as marital status or educational attainment. In this paper, we analyzed data from the 2016 American Community Survey using a high-dimensional wage regression and applying double lasso to quantify heterogeneity in the gender wage gap. We found that the gap varied substantially across women and was driven primarily by marital status, having children at home, race, occupation, industry, and educational attainment. We recommend that policy makers use these insights to design policies that will reduce discrimination and unequal pay more effectively.
---
PDF链接:
https://arxiv.org/pdf/1812.04345
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群