全部版块 我的主页
论坛 经济学人 二区 外文文献专区
377 0
2022-03-06
摘要翻译:
本文提出了一种基于阵列布局和垂直位图布局的混合数据库表示方法,用于在稀疏大数据集上挖掘完全最大频繁项集(MFI)。我们的工作在可扩展性、项目搜索顺序和两个水平和垂直投影技术方面都是新颖的。我们还提出了一个使用这种混合数据库表示方法的极大值算法。在真实和稀疏基准数据集上的不同实验结果表明,该方法优于现有的最大值算法。
---
英文标题:
《HybridMiner: Mining Maximal Frequent Itemsets Using Hybrid Database
  Representation Approach》
---
作者:
Shariq Bashir, and Abdul Rauf Baig
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Databases        数据库
分类描述:Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
涵盖数据库管理、数据挖掘和数据处理。大致包括ACM学科类E.2、E.5、H.0、H.2和J.1中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Data Structures and Algorithms        数据结构与算法
分类描述:Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
涵盖数据结构和算法分析。大致包括ACM学科类E.1、E.2、F.2.1和F.2.2中的材料。
--

---
英文摘要:
  In this paper we present a novel hybrid (arraybased layout and vertical bitmap layout) database representation approach for mining complete Maximal Frequent Itemset (MFI) on sparse and large datasets. Our work is novel in terms of scalability, item search order and two horizontal and vertical projection techniques. We also present a maximal algorithm using this hybrid database representation approach. Different experimental results on real and sparse benchmark datasets show that our approach is better than previous state of art maximal algorithms.
---
PDF链接:
https://arxiv.org/pdf/0904.3312
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群