摘要翻译:
本文提出了一个Nevanlinna理论或diophantine近似的猜想,用一束理想代替法线交除数。这是通过使用一个涉及乘数理想束的校正项来完成的。这个新猜想微不足道地隐含了内万林纳理论或丢番图近似中的早先猜想,事实上与这些猜想等价。虽然它没有提供任何新的东西,但对于某些应用来说,它可能是一个更方便的提法。
---
英文标题:
《Multiplier ideal sheaves, Nevanlinna theory, and diophantine
  approximation》
---
作者:
Paul Vojta
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  This note states a conjecture for Nevanlinna theory or diophantine approximation, with a sheaf of ideals in place of the normal crossings divisor. This is done by using a correction term involving a multiplier ideal sheaf. This new conjecture trivially implies earlier conjectures in Nevanlinna theory or diophantine approximation, and in fact is equivalent to these conjectures. Although it does not provide anything new, it may be a more convenient formulation for some applications. 
---
PDF链接:
https://arxiv.org/pdf/0709.3322