全部版块 我的主页
论坛 经济学人 二区 外文文献专区
542 0
2022-03-06
摘要翻译:
频谱感知是认知无线电中的一个重要过程。许多已提出的传感技术都存在处理时间长、硬件成本高和计算复杂度高等问题。为了解决这些问题,压缩传感技术被提出来,以减少处理时间,加快无线电频谱的扫描过程。选择合适的稀疏恢复算法是实现这一目标的必要条件。人们提出了许多稀疏恢复算法。本文综述了稀疏恢复算法,对它们进行了分类,并对它们的性能进行了比较。为了进行比较,我们使用了几个指标,如恢复误差、恢复时间、协方差和相变图。结果表明,贪婪类下的技术速度更快,凸类和松弛类的技术在恢复误差方面表现更好,基于贝叶斯的技术在小恢复误差和短恢复时间之间取得了良好的平衡。
---
英文标题:
《Compressive Sensing: Performance Comparison Of Sparse Recovery
  Algorithms》
---
作者:
Youness Arjoune, Naima Kaabouch, Hassan El Ghazi, Ahmed Tamtaoui
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Spectrum sensing is an important process in cognitive radio. A number of sensing techniques that have been proposed suffer from high processing time, hardware cost and computational complexity. To address these problems, compressive sensing has been proposed to decrease the processing time and expedite the scanning process of the radio spectrum. Selection of a suitable sparse recovery algorithm is necessary to achieve this goal. A number of sparse recovery algorithms have been proposed. This paper surveys the sparse recovery algorithms, classify them into categories, and compares their performances. For the comparison, we used several metrics such as recovery error, recovery time, covariance, and phase transition diagram. The results show that techniques under Greedy category are faster, techniques of Convex and Relaxation category perform better in term of recovery error, and Bayesian based techniques are observed to have an advantageous balance of small recovery error and a short recovery time.
---
PDF链接:
https://arxiv.org/pdf/1801.09744
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群