摘要翻译:
我们对所谓的PD检测器提出了一种扩展。PD检测器联合监测接收功率和相关分布失真,以检测GNSS进位偏离型欺骗、干扰或多径的存在。我们表明,用基于单信号相关函数模型的最大似然估计的后拟合残差来代替PD检测器的基于对称差分的失真测量,可以显著提高分类性能。我们将改进后的技术称为PD-ML检测器。与PD检测器直接比较,PD-ML检测器在对大量记录的野外数据进行测试时,表现出更高的分类精度。特别地,它(1)在区分欺骗攻击和干扰攻击方面明显更准确,(2)在区分受多径影响的数据和无干扰的数据方面更好,以及(3)通过将多径分类为欺骗而发出假警报的可能性更小。PD-ML检测器以额外的计算复杂度为代价实现了这种改进的性能。
---
英文标题:
《Maximum-Likelihood Power-Distortion Monitoring for GNSS Signal
Authentication》
---
作者:
Jason N. Gross, Cagri Kilic, Todd E. Humphreys
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Cryptography and Security 密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
---
英文摘要:
We propose an extension to the so-called PD detector. The PD detector jointly monitors received power and correlation profile distortion to detect the presence of GNSS carry-off-type spoofing, jamming, or multipath. We show that classification performance can be significantly improved by replacing the PD detector's symmetric-difference-based distortion measurement with one based on the post-fit residuals of the maximum-likelihood estimate of a single-signal correlation function model. We call the improved technique the PD-ML detector. In direct comparison with the PD detector, the PD-ML detector exhibits improved classification accuracy when tested against an extensive library of recorded field data. In particular, it is (1) significantly more accurate at distinguishing a spoofing attack from a jamming attack, (2) better at distinguishing multipath-afflicted data from interference-free data, and (3) less likely to issue a false alarm by classifying multipath as spoofing. The PD-ML detector achieves this improved performance at the expense of additional computational complexity.
---
PDF链接:
https://arxiv.org/pdf/1712.04501