摘要翻译:
我们考虑了包含在期权价格中的状态价格密度的非参数估计。与通常的密度估计问题不同,我们只观察期权价格及其相应的执行价格,而不是从状态价格密度中提取样本。我们提出用非参数混合直接建模状态价格密度,并用最小二乘法估计它。我们证明了尽管最小化是在无穷维函数空间上进行的,但最小化总是允许有限维的表示,并且可以有效地计算。我们还证明了所提出的状态价格密度函数的估计以“近似参数”的速度收敛于真值。
---
英文标题:
《State price density estimation via nonparametric mixtures》
---
作者:
Ming Yuan
---
最新提交年份:
2009
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
英文摘要:
We consider nonparametric estimation of the state price density encapsulated in option prices. Unlike usual density estimation problems, we only observe option prices and their corresponding strike prices rather than samples from the state price density. We propose to model the state price density directly with a nonparametric mixture and estimate it using least squares. We show that although the minimization is taken over an infinitely dimensional function space, the minimizer always admits a finite dimensional representation and can be computed efficiently. We also prove that the proposed estimate of the state price density function converges to the truth at a ``nearly parametric'' rate.
---
PDF链接:
https://arxiv.org/pdf/0910.1430