全部版块 我的主页
论坛 经济学人 二区 外文文献专区
379 0
2022-03-06
摘要翻译:
本文研究了Hirzebruch曲面$F_e$上的向量丛$E$,使得它们由一个跨越的但不是充分的线丛$M=\mathcal{O}_{F_e}(H+EF)$所引起的扭曲具有自然上同调,即$H^0(F_e,E(tM))>0$隐含$H^1(F_e,E(tM))=0$。
---
英文标题:
《Vector bundles on Hirzebruch surfaces whose twists by a non-ample line
  bundle have natural cohomology》
---
作者:
E. Ballico, F. Malaspina
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Here we study vector bundles $E$ on the Hirzebruch surface $F_e$ such that their twists by a spanned, but not ample, line bundle $M = \mathcal {O}_{F_e}(h+ef)$ have natural cohomology, i.e. $h^0(F_e,E(tM)) >0$ implies $h^1(F_e,E(tM)) = 0$.
---
PDF链接:
https://arxiv.org/pdf/0710.3494
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群