全部版块 我的主页
论坛 经济学人 二区 外文文献专区
371 0
2022-03-06
摘要翻译:
随着射电望远镜变得越来越灵敏,射频干扰(RFI)的破坏性效应也越来越明显。在射电望远镜阵列附近,RFI源往往很容易被移除或替换;挑战在于识别它们。瞬态(脉冲)RFI特别难以识别。我们提出了一种新的基于字典的瞬态RFI识别方法。RFI事件被视为子事件序列,从特定的标记类中提取。我们演示了一种利用瞬态RFI数据集自动提取和标记子事件的方法。标签字典可以与隐马尔可夫模型结合使用,以可靠地识别RFI事件的来源。最后,我们研究了瞬态RFI难以分类的原因,我们发现在主成分域中的聚类分离受某些源的供电相位的影响。
---
英文标题:
《A Dictionary Approach to Identifying Transient RFI》
---
作者:
Daniel Czech, Amit Mishra and Michael Inggs
---
最新提交年份:
2017
---
分类信息:

一级分类:Physics        物理学
二级分类:Instrumentation and Methods for Astrophysics        天体物理学仪器和方法
分类描述:Detector and telescope design, experiment proposals. Laboratory Astrophysics. Methods for data analysis, statistical methods. Software, database design
探测器和望远镜设计,实验建议。实验室天体物理学。资料分析方法,统计方法。软件,数据库设计
--
一级分类:Computer Science        计算机科学
二级分类:Computer Vision and Pattern Recognition        计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  As radio telescopes become more sensitive, the damaging effects of radio frequency interference (RFI) become more apparent. Near radio telescope arrays, RFI sources are often easily removed or replaced; the challenge lies in identifying them. Transient (impulsive) RFI is particularly difficult to identify. We propose a novel dictionary-based approach to transient RFI identification. RFI events are treated as sequences of sub-events, drawn from particular labelled classes. We demonstrate an automated method of extracting and labelling sub-events using a dataset of transient RFI. A dictionary of labels may be used in conjunction with hidden Markov models to identify the sources of RFI events reliably. We attain improved classification accuracy over traditional approaches such as SVMs or a na\"ive kNN classifier. Finally, we investigate why transient RFI is difficult to classify. We show that cluster separation in the principal components domain is influenced by the mains supply phase for certain sources.
---
PDF链接:
https://arxiv.org/pdf/1711.08823
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群