全部版块 我的主页
论坛 经济学人 二区 外文文献专区
295 0
2022-03-06
摘要翻译:
帧是用于信号分解和重构的线性算子的基础,如离散傅里叶变换、Gabor、小波和曲率变换。稀疏表示模型的出现使框架理论的重点转向稀疏L1最小化问题。本文将帧理论应用于信号的稀疏表示,其中一个帧使用合成字典,一个对偶帧使用分析字典。我们寻求一种新的双框架设计,其中通过分解任何信号得到的稀疏向量也是基于重构框架的表示信号的稀疏解。我们的发现表明,这种类型的对偶帧不能为过完全帧构造,从而排除了使用任何线性分析算子来驱动稀疏合成系数用于信号表示。然而,稀疏综合解的最佳近似值可以从使用规范对偶框架的分析系数中导出。在本研究中,我们开发了一种新的字典学习算法(称为Parseval K-SVD)来学习紧框架字典。然后,我们利用分析和综合的观点的信号表示与帧推导出优化公式的问题有关的图像恢复。我们的初步结果表明,使用该方法恢复的图像与词典的帧边界相关,从而证明了在不同的应用中使用不同的词典的重要性。
---
英文标题:
《Frame-based Sparse Analysis and Synthesis Signal Representations and
  Parseval K-SVD》
---
作者:
Wen-Liang Hwang, Ping-Tzan Huang, Tai-Lang Jong
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  Frames are the foundation of the linear operators used in the decomposition and reconstruction of signals, such as the discrete Fourier transform, Gabor, wavelets, and curvelet transforms. The emergence of sparse representation models has shifted of the emphasis in frame theory toward sparse l1-minimization problems. In this paper, we apply frame theory to the sparse representation of signals in which a synthesis dictionary is used for a frame and an analysis dictionary is used for a dual frame. We sought to formulate a novel dual frame design in which the sparse vector obtained through the decomposition of any signal is also the sparse solution representing signals based on a reconstruction frame. Our findings demonstrate that this type of dual frame cannot be constructed for over-complete frames, thereby precluding the use of any linear analysis operator in driving the sparse synthesis coefficient for signal representation. Nonetheless, the best approximation to the sparse synthesis solution can be derived from the analysis coefficient using the canonical dual frame. In this study, we developed a novel dictionary learning algorithm (called Parseval K-SVD) to learn a tight-frame dictionary. We then leveraged the analysis and synthesis perspectives of signal representation with frames to derive optimization formulations for problems pertaining to image recovery. Our preliminary, results demonstrate that the images recovered using this approach are correlated to the frame bounds of dictionaries, thereby demonstrating the importance of using different dictionaries for different applications.
---
PDF链接:
https://arxiv.org/pdf/1801.01959
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群