全部版块 我的主页
论坛 经济学人 二区 外文文献专区
245 0
2022-03-06
摘要翻译:
智能手机已经渗透到我们日常生活的各个方面。它们已经成为许多重要数据和应用程序的重要链接,如果这些数据和应用程序受到损害,可能会导致灾难性的结果。正因如此,如今的智能手机都配备了多层认证模块。然而,仍然需要一个可行的、不引人注目的安全层,它可以使用成本效益高且在智能手机上广泛可用的资源来执行用户身份验证的任务。在这项工作中,我们提出了一种利用手机嵌入式加速度传感器的数据来识别用户的方法。从步行数据样本中提取包含时域和频域信息的特征,建立随机森林集合分类模型。根据实验结果,所得模型的精度为0.9679,曲线下面积(AUC)为0.9822。
---
英文标题:
《Person Recognition using Smartphones' Accelerometer Data》
---
作者:
Thingom Bishal Singha, Rajsekhar Kumar Nath and A. V. Narsimhadhan
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Cryptography and Security        密码学与安全
分类描述:Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
涵盖密码学和安全的所有领域,包括认证、公钥密码系统、携带证明的代码等。大致包括ACM主题课程D.4.6和E.3中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  Smartphones have become quite pervasive in various aspects of our daily lives. They have become important links to a host of important data and applications, which if compromised, can lead to disastrous results. Due to this, today's smartphones are equipped with multiple layers of authentication modules. However, there still lies the need for a viable and unobtrusive layer of security which can perform the task of user authentication using resources which are cost-efficient and widely available on smartphones. In this work, we propose a method to recognize users using data from a phone's embedded accelerometer sensors. Features encapsulating information from both time and frequency domains are extracted from walking data samples, and are used to build a Random Forest ensemble classification model. Based on the experimental results, the resultant model delivers an accuracy of 0.9679 and Area under Curve (AUC) of 0.9822.
---
PDF链接:
https://arxiv.org/pdf/1711.04689
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群