全部版块 我的主页
论坛 经济学人 二区 外文文献专区
639 0
2022-03-07
摘要翻译:
设G是群A_4或Z_2xZ_2。本文在具有单群群G的P^1的4次复盖曲线的Hurwitz轨迹H_g\子集M_g上计算了λ_g的积分。我们计算了这些积分的母函数,并将它们分别写成E_6和D_4根系的正根求和的三角表达式。作为应用,我们证明了轨道[C^3/A_4]和[C^3/(Z_2xZ_2)]的CRIPAN分辨猜想。
---
英文标题:
《Hurwitz-Hodge Integrals, the E6 and D4 root systems, and the Crepant
  Resolution Conjecture》
---
作者:
Jim Bryan and Amin Gholampour
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Let G be the group A_4 or Z_2xZ_2. We compute the integral of \lambda_g on the Hurwitz locus H_G\subset M_g of curves admitting a degree 4 cover of P^1 having monodromy group G. We compute the generating functions for these integrals and write them as a trigonometric expression summed over the positive roots of the E_6 and D_4 root systems respectively. As an application, we prove the Crepant Resolution Conjecture for the orbifolds [C^3/A_4] and [C^3/(Z_2xZ_2)].
---
PDF链接:
https://arxiv.org/pdf/0708.4244
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群