摘要翻译:
微生物电解槽是一种廉价、高效、可持续的新型制氢技术。然而,为了扩大这项技术的规模,我们需要更好地理解设备中的过程。在这一努力中,我们提出了一个微分代数方程(DAE)模型的微生物电解槽的代数约束电流。然后我们对DAE系统进行灵敏度和分叉分析。该模型既可应用于间歇循环的MECs,也可应用于连续流的MECs。我们进行微分代数灵敏度分析后,拟合模拟的电流密度数据的批周期MEC。灵敏度分析表明,在实验过程中的特定时刻,哪些参数对电流密度的影响最大。特别是,外电原细菌的生长和消耗参数在峰值电流密度之前有很强的影响。最大峰值电流密度的一个替代策略是在连续流动的MEC中保持一个非零电流密度的长期稳定平衡。我们刻画了稳定的非零电流平衡所需的最小稀释率,并证明了稀释率参数在几条平衡曲线之间交换稳定性的跨临界分叉。具体地说,随着稀释速率的增加,体系通过三种机制转变,稳定平衡表现为(i)产甲烷菌的竞争排斥,(ii)共存,(iii)外分子的竞争排斥。正的长期当前生产只有在最后两种制度下才是可行的。这些结果建议了如何修改系统参数以提高间歇循环MEC的峰值电流密度或提高连续流动MEC的长期电流密度平衡值。
---
英文标题:
《Sensitivity and Bifurcation Analysis of a DAE Model for a Microbial
Electrolysis Cell》
---
作者:
Harry J. Dudley, Lu Lu, Zhiyong Jason Ren, and David M. Bortz
---
最新提交年份:
2018
---
分类信息:
一级分类:Mathematics 数学
二级分类:Dynamical Systems 动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
Microbial electrolysis cells (MECs) are a promising new technology for producing hydrogen cheaply, efficiently, and sustainably. However, to scale up this technology, we need a better understanding of the processes in the devices. In this effort, we present a differential-algebraic equation (DAE) model of a microbial electrolysis cell with an algebraic constraint on current. We then perform sensitivity and bifurcation analysis for the DAE system. The model can be applied either to batch-cycle MECs or to continuous-flow MECs. We conduct differential-algebraic sensitivity analysis after fitting simulations to current density data for a batch-cycle MEC. The sensitivity analysis suggests which parameters have the greatest influence on the current density at particular times during the experiment. In particular, growth and consumption parameters for exoelectrogenic bacteria have a strong effect prior to the peak current density. An alternative strategy to maximizing peak current density is maintaining a long term stable equilibrium with non-zero current density in a continuous-flow MEC. We characterize the minimum dilution rate required for a stable nonzero current equilibrium and demonstrate transcritical bifurcations in the dilution rate parameter that exchange stability between several curves of equilibria. Specifically, increasing the dilution rate transitions the system through three regimes where the stable equilibrium exhibits (i) competitive exclusion by methanogens, (ii) coexistence, and (iii) competitive exclusion by exolectrogens. Positive long term current production is only feasible in the final two regimes. These results suggest how to modify system parameters to increase peak current density in a batch-cycle MEC or to increase the long term current density equilibrium value in a continuous-flow MEC.
---
PDF链接:
https://arxiv.org/pdf/1802.06326