摘要翻译:
为了风险价值估计的目的,我们考虑了几个多元重尾分布族,它们可以被看作是Paretian稳定分布和Student's t分布的多维版本,允许不同的边缘具有不同的尾部厚度。在讨论了相关的估计和模拟问题后,我们利用美国股票价格的历史数据,对一组含有衍生工具的投资组合进行了回测研究。
---
英文标题:
《Multivariate heavy-tailed models for Value-at-Risk estimation》
---
作者:
Carlo Marinelli, Stefano d'Addona, Svetlozar T. Rachev
---
最新提交年份:
2011
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
英文摘要:
For purposes of Value-at-Risk estimation, we consider several multivariate families of heavy-tailed distributions, which can be seen as multidimensional versions of Paretian stable and Student's t distributions allowing different marginals to have different tail thickness. After a discussion of relevant estimation and simulation issues, we conduct a backtesting study on a set of portfolios containing derivative instruments, using historical US stock price data.
---
PDF链接:
https://arxiv.org/pdf/1005.2862