全部版块 我的主页
论坛 经济学人 二区 外文文献专区
340 0
2022-03-07
摘要翻译:
一个经过验证的、现实的燃料成本模型的可用性是开发和验证新的优化方法和控制工具的先决条件。本文利用自回归积分滑动平均(ARIMA)模型,结合历史燃料成本数据,对燃料成本分布进行了三步预测。首先,探讨了EIA-923表的数据特征,并以德克萨斯州发电设施的天然气燃料成本为例,开发并验证了预测算法。此外,利用与德克萨斯州天然气中心相关的现货价格来增强燃料成本预测。预测数据符合正态分布,并用Kullback-Leibler散度来评价实际燃料成本分布与估计分布之间的差异。比较结果表明,本文提出的预测算法总体上是有效的,值得进一步研究。
---
英文标题:
《Improvement to the Prediction of Fuel Cost Distributions Using ARIMA
  Model》
---
作者:
Zhongyang Zhao, Chang Fu, Caisheng Wang, Carol Miller
---
最新提交年份:
2018
---
分类信息:

一级分类:Statistics        统计学
二级分类:Applications        应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  Availability of a validated, realistic fuel cost model is a prerequisite to the development and validation of new optimization methods and control tools. This paper uses an autoregressive integrated moving average (ARIMA) model with historical fuel cost data in development of a three-step-ahead fuel cost distribution prediction. First, the data features of Form EIA-923 are explored and the natural gas fuel costs of Texas generating facilities are used to develop and validate the forecasting algorithm for the Texas example. Furthermore, the spot price associated with the natural gas hub in Texas is utilized to enhance the fuel cost prediction. The forecasted data is fit to a normal distribution and the Kullback-Leibler divergence is employed to evaluate the difference between the real fuel cost distributions and the estimated distributions. The comparative evaluation suggests the proposed forecasting algorithm is effective in general and is worth pursuing further.
---
PDF链接:
https://arxiv.org/pdf/1801.01535
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群