摘要翻译:
研究了规范群G的扭曲n=4超Yang-Mills理论中Wilson-Tot Hooft算子的算子乘积展开。Montonen-Olive对偶对OPE有很强的约束,在G=SU(2)的情况下完全确定OPE。从数学的角度出发,利用Montonen-Olive对偶预言了仿射Grassmanian中Schubert胞上某些等变向量丛的L^2Dolbeault上同调。我们验证了其中的一些预测。我们还对拓扑场论中的高级范畴和缺陷作了一些一般性的观察。
---
英文标题:
《The algebra of Wilson-'t Hooft operators》
---
作者:
Anton Kapustin, Natalia Saulina
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:High Energy Physics - Theory 高能物理-理论
分类描述:Formal aspects of quantum field theory. String theory, supersymmetry and supergravity.
量子场论的形式方面。弦理论,超对称性和超引力。
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We study the Operator Product Expansion of Wilson-'t Hooft operators in a twisted N=4 super-Yang-Mills theory with gauge group G. The Montonen-Olive duality puts strong constraints on the OPE and in the case G=SU(2) completely determines it. From the mathematical point of view, the Montonen-Olive duality predicts the L^2 Dolbeault cohomology of certain equivariant vector bundles on Schubert cells in the affine Grassmannian. We verify some of these predictions. We also make some general observations about higher categories and defects in Topological Field Theories.
---
PDF链接:
https://arxiv.org/pdf/0710.2097