摘要翻译:
我们考虑这样一个社会系统,在这个系统中,主体不仅以其状态为特征,而且有选择其交互伙伴以最大化其效用的自由。我们将这些系统映射到一个伊辛模型上,在这个模型中,自旋通过动态网络中的链接动态耦合。在该模型中,有两个在正则框架中朝着最小能量态排列的动力学量:自旋s_i和邻接矩阵元C_ij}。该模型是精确可解的,因为微正则配分函数是c_{ij}最小化能量的直接结果,是二项式因子的乘积。我们求解了有限尺寸和两个可能的热力学极限的系统,并讨论了相图。
---
英文标题:
《Socio-economical dynamics as a solvable spin system on co-evolving
networks》
---
作者:
Christoly Biely, Rudolf Hanel, Stefan Thurner
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Physics and Society 物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--
---
英文摘要:
We consider social systems in which agents are not only characterized by their states but also have the freedom to choose their interaction partners to maximize their utility. We map such systems onto an Ising model in which spins are dynamically coupled by links in a dynamical network. In this model there are two dynamical quantities which arrange towards a minimum energy state in the canonical framework: the spins, s_i, and the adjacency matrix elements, c_{ij}. The model is exactly solvable because microcanonical partition functions reduce to products of binomial factors as a direct consequence of the c_{ij} minimizing energy. We solve the system for finite sizes and for the two possible thermodynamic limits and discuss the phase diagrams.
---
PDF链接:
https://arxiv.org/pdf/707.3085