摘要翻译:
这封信研究了无人驾驶航空器(UAV)辅助网络的发射功率和轨迹优化问题。不同于现有的大多数固定通信基础设施的研究,本文考虑了一个动态场景,即一架飞行的无人机同时为多个地面节点提供无线服务。为了充分利用无人机机动性提供的可控信道变化,对无人机的发射功率和飞行轨迹进行联合优化,以在给定的时间长度内最大限度地获得最小平均吞吐量。针对具有功率预算和弹道约束的非凸优化问题,本文提出了一种有效的联合发射功率和弹道优化算法。仿真结果验证了该算法的有效性,并表明优化后的发射功率在空间域表现出充水特性。
---
英文标题:
《Unmanned Aerial Vehicle-Aided Communications: Joint Transmit Power and
Trajectory Optimization》
---
作者:
Haichao Wang, Guochun Ren, Jin Chen, Guoru Ding, and Yijun Yang
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
This letter investigates the transmit power and trajectory optimization problem for unmanned aerial vehicle (UAV)-aided networks. Different from majority of the existing studies with fixed communication infrastructure, a dynamic scenario is considered where a flying UAV provides wireless services for multiple ground nodes simultaneously. To fully exploit the controllable channel variations provided by the UAV's mobility, the UAV's transmit power and trajectory are jointly optimized to maximize the minimum average throughput within a given time length. For the formulated non-convex optimization with power budget and trajectory constraints, this letter presents an efficient joint transmit power and trajectory optimization algorithm. Simulation results validate the effectiveness of the proposed algorithm and reveal that the optimized transmit power shows a water-filling characteristic in spatial domain.
---
PDF链接:
https://arxiv.org/pdf/1801.05351