摘要翻译:
无人机,又称无人驾驶飞机,正在激增。诸如监控、灾难管理和无人机竞速等应用对与无人机的通信在吞吐量、可靠性和延迟方面提出了很高的要求。目前用于无人机连接的现有无线技术,尤其是Wi-Fi,仅限于短距离和低移动性情况。需要新的、可扩展的技术来满足未来对长连接范围的需求,支持快速移动的无人机,以及与整个无人机群同时通信的可能性。海量多输入多输出(MIMO)是新兴5G标准的主要技术组成部分,具有满足这些需求的潜力。
---
英文标题:
《Massive MIMO for Drone Communications: Case Studies and Future
Directions》
---
作者:
Prabhu Chandhar and Erik G. Larsson
---
最新提交年份:
2019
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Information Theory 信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Mathematics 数学
二级分类:Information Theory 信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
Unmanned aerial vehicles (UAVs), also known as drones, are proliferating. Applications, such as surveillance, disaster management, and drone racing, place high requirements on the communication with the drones in terms of throughput, reliability, and latency. The existing wireless technologies, notably Wi-Fi, that are currently used for drone connectivity are limited to short ranges and low-mobility situations. New, scalable technology is needed to meet future demands on long connectivity ranges, support for fast-moving drones, and the possibility to simultaneously communicate with entire swarms of drones. Massive multiple-input and multiple-output (MIMO), the main technology component of emerging 5G standards, has the potential to meet these requirements.
---
PDF链接:
https://arxiv.org/pdf/1711.07668